TOPOLOGIE IV – EXERCISE SHEET 7

MARCUS NICOLAS

The formula for the tensor product on $\operatorname{Pr}_{\mathcal{V}}^{\mathrm{L}}$. Let \mathcal{V} a presentably symmetric monoidal category, or in other words a commutative algebra object in $\operatorname{Pr}^{\mathrm{L}}$. For \mathcal{C} , \mathcal{D} and \mathcal{E} three \mathcal{V} -modules, the chain of identifications

$$\begin{split} \operatorname{Fun}_{\mathcal{V}}^{\mathrm{L}}(\mathcal{C}, \operatorname{Fun}_{\mathcal{V}}^{\mathrm{L}}(\mathcal{D}, \mathcal{E})) &\simeq \operatorname{Fun}_{\mathcal{V}}^{\mathrm{L}}(\mathcal{C}, \operatorname{Fun}_{\mathcal{V}}^{\mathrm{L}}(\mathcal{E}^{\operatorname{op}}, \mathcal{D}^{\operatorname{op}})) \\ &\simeq \operatorname{Fun}_{\mathcal{V}}^{\mathrm{L}}(\mathcal{E}^{\operatorname{op}}, \operatorname{Fun}_{\mathcal{V}}^{\mathrm{L}}(\mathcal{C}, \mathcal{D}^{\operatorname{op}})) \\ &\simeq \operatorname{Fun}_{\mathcal{V}}^{\mathrm{L}}(\operatorname{Fun}_{\mathcal{V}}^{\mathrm{L}}(\mathcal{C}, \mathcal{D}^{\operatorname{op}})^{\operatorname{op}}, \mathcal{E}) \\ &\simeq \operatorname{Fun}_{\mathcal{V}}^{\mathrm{L}}(\operatorname{Fun}_{\mathcal{V}}^{\mathrm{R}}(\mathcal{C}^{\operatorname{op}}, \mathcal{D}), \mathcal{E}) \end{split}$$

is natural in all variables. More explicitly, this identification sends $F \in \operatorname{Fun}_{\mathcal{V}}^{\mathrm{L}}(\mathcal{C}, \operatorname{Fun}_{\mathcal{V}}^{\mathrm{L}}(\mathcal{D}, \mathcal{E}))$ to the left adjoint of the functor $\mathcal{E} \to \operatorname{Fun}_{\mathcal{V}}^{\mathrm{R}}(\mathcal{C}^{\mathrm{op}}, \mathcal{D})$ given by the formula

$$z \mapsto \left(x \mapsto F(x)^{\mathbf{R}}(z) \right)$$

where $(-)^{R}$ denotes the action of passing to right adjoints. In particular, we have

$$\mathcal{C}\otimes_{\mathcal{V}}\mathcal{D}\simeq\mathrm{Fun}^{\mathrm{R}}_{\mathcal{V}}(\mathcal{C}^{\mathrm{op}},\mathcal{D})$$

since both objects have the same universal property. As an exercise, describe the functoriality of the right-hand side in variables C and D by tracing back through the above identifications.

An important special case occurs when $\mathcal{C} \equiv Psh(I) \otimes \mathcal{V}$ for some small category \mathcal{I} , where the above isomorphism can be rewritten

$$\operatorname{Fun}(\mathcal{I}, \operatorname{Fun}^{\operatorname{L}}_{\mathcal{V}}(\mathcal{D}, \mathcal{E})) \simeq \operatorname{Fun}^{\operatorname{L}}_{\mathcal{V}}(\operatorname{Fun}(\mathcal{I}^{\operatorname{op}}, \mathcal{D}), \mathcal{E})$$

Exercise 1. Let R be a commutative ring spectrum.

(1) For \mathcal{C} any small category, we get by the above an isomorphism

$$\operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, \operatorname{Mod}(R)) \simeq \operatorname{Fun}_{R}^{\mathbb{L}}(\operatorname{Mod}(R), \operatorname{Mod}(R)))$$
$$\simeq \operatorname{Fun}_{R}^{\mathbb{L}}(\operatorname{Fun}(\mathcal{C}, \operatorname{Mod}(R)), \operatorname{Mod}(R))$$

sending $\mathcal{F}: \mathcal{C}^{\mathrm{op}} \to \mathrm{Mod}(R)$ to the left adjoint of the functor

$$\operatorname{Hom}_R(\mathcal{F}, -) \colon \operatorname{Mod}(R) \to \operatorname{Fun}(\mathcal{C}, \operatorname{Mod}(R))$$

given by the formula

$$M \mapsto (x \mapsto \operatorname{Hom}_R(\mathcal{F}(x), M))$$

But, for M an R-module and $\mathcal{X} : \mathcal{C} \to \operatorname{Mod}(R)$:

$$\operatorname{Hom}(\mathcal{X}, \operatorname{Hom}_{R}(\mathcal{F}, M)) \simeq \int_{x \in \mathcal{C}} \operatorname{Hom}_{R}(\mathcal{X}(x), \operatorname{Hom}_{R}(\mathcal{F}(x), M))$$
$$\simeq \int_{x \in \mathcal{C}} \operatorname{Hom}_{R}(\mathcal{X}(x) \otimes \mathcal{F}(x), M)$$
$$\simeq \operatorname{Hom}_{R}\left(\int^{\mathcal{C}} \mathcal{X} \otimes \mathcal{F}, M\right)$$

Finally, the above isomorphism is explicitly given by the formula

$$\mathcal{F} \to \int_{1}^{\mathcal{C}} (-) \otimes \mathcal{F}$$

This restricts to the correct formula when $\mathcal{C} \equiv X$ is a groupoid since, since in this case $\operatorname{Tw}(X) \simeq X$.

(2) For \mathcal{C} and \mathcal{D} two small categories, the identification:

$$\operatorname{Fun}(\mathcal{C}^{\operatorname{op}} \times \mathcal{D}, \operatorname{Mod}(R)) \simeq \operatorname{Fun}(\mathcal{D}, \operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, \operatorname{Mod}(R))) \\ \simeq \operatorname{Fun}(\mathcal{D}, \operatorname{Fun}_{R}^{L}(\operatorname{Fun}(\mathcal{C}, \operatorname{Mod}(R)), \operatorname{Mod}(R))) \\ \simeq \operatorname{Fun}_{R}^{L}(\operatorname{Fun}(\mathcal{C}, \operatorname{Mod}(R)), \operatorname{Fun}(\mathcal{D}, \operatorname{Mod}(R)))$$

sends $\mathcal{F} \colon \mathcal{C}^{\mathrm{op}} \times \mathcal{D} \to \mathrm{Mod}(R)$ to the functor

$$\mathcal{X} \mapsto \left(y \mapsto \int^{\mathcal{C}} (-) \otimes \mathcal{F}(-, y) \right)$$

Exercise 2. Let X be a compact spectrum. Since Sp is generated under filtered colimits by finite spectra, X is a retract of some finite spectrum. Without loss of generality, we can thus assume that X is connective and that $X \otimes \mathbb{Z}$ is *n*-coconnective for some $n \ge 0$. We prove by induction on n that X is finite.

(1) If n = 0, then $X \otimes \mathbb{Z} \simeq H_*(X \otimes \mathbb{Z}) \simeq M$ for some classical \mathbb{Z} -module M. The compacity of X implies that M is projective and finitely generated, which in this case means free of finite rank r. Choose an identification $\mathbb{Z}^r \simeq M$, which by stable Hurewicz lifts to a map $\varphi \colon \mathbb{S}^r \to X$. In particular

$$(\operatorname{cofib} \varphi) \otimes \mathbb{Z} \simeq \operatorname{cofib} \varphi \otimes \mathbb{Z}$$
$$\simeq 0$$

But $\operatorname{cofib} \varphi$ is connective since X is, and stable Hurewicz implies $\operatorname{cofib} \varphi \simeq 0$. The morphism φ is therefore an isomorphism and the S-module X is free of finite rank.

(2) Assume that the result holds for some $n \ge 0$ and that $X \otimes \mathbb{Z}$ is (n+1)-coconnective. Since the chain complex $X \otimes \mathbb{Z}$ is perfect, the group $H_0(X \otimes \mathbb{Z})$ is finitely generated and there exists a presentation $\mathbb{Z}^r \twoheadrightarrow H_0(X \otimes \mathbb{Z})$. By the stable Hurewicz theorem, this morphism lifts to $\varphi \colon \mathbb{S}^r \to X$, and from the long exact sequence induced in homology

$$\cdots \longrightarrow \mathrm{H}_{k}(\mathbb{Z}^{r}) \xrightarrow{\varphi_{*}} \mathrm{H}_{k}(X \otimes \mathbb{Z}) \longrightarrow \mathrm{H}_{k-1}((\mathrm{fib}\,\varphi) \otimes \mathbb{Z}) \longrightarrow \cdots$$

one sees that $(\operatorname{fib} \varphi) \otimes \mathbb{Z}$ is connective and *n*-coconnective¹. Because X was supposed to be connective, the spectrum $\operatorname{fib} \varphi \simeq \Omega(\operatorname{cofib} \varphi)$ is (-1)-connective a priori, and therefore also connective by the stable Hurewicz theorem. The induction assumption implies that $\operatorname{fib} \varphi$ is finite, and this concludes since $X \simeq \operatorname{cofib} (\operatorname{fib} \varphi \to \mathbb{S}^r)$.

Exercise 3. Denote i_2 and i_3 the inclusions of S^2 and S^3 respectively in the wedge sum $S^2 \vee S^3$, and

$$[i_2, i_3]: S^4 \to S^2 \vee S^3$$

the induced Whitehead bracket. It sits inside a cocartesian square

$$\begin{array}{c} S^4 \xrightarrow{[i_2,i_3]} S^2 \lor S^3 \\ \downarrow & \downarrow \\ \ast \xrightarrow{} S^2 \times S^3 \end{array}$$

so that $[i_2, i_3]$ is homotopic to the attaching map for the 5-cell of $S^2 \times S^3$.

(1) For any $\alpha: S^4 \to S^2 \vee S^3$, the diagram

¹This uses $n + 1 \ge 1$, so that one cannot just merge the base case with this induction step.

shows that the reduced (co)homology of $\operatorname{cofib} \alpha$ is concentrated in degrees 2, 3 and 5. Denote $c(\alpha) \in \mathrm{H}^{5}(\operatorname{cofib} \alpha)$ the unique lift of $[S^{5}]$.

(2) Pasting cocartesian squares, we obtain

Since $\mathrm{H}^*(\mathbb{P}^2(\mathbb{C});\mathbb{F}_2) \simeq \mathbb{F}_2[w_2]/(w_2^3)$, we have in $\mathrm{H}^5(\operatorname{cofib} i_3\eta;\mathbb{F}_2)$:

$$Sq^{2}(\Sigma w_{2}) = \Sigma Sq^{2}(w_{2})$$
$$= \Sigma w_{2}^{2}$$
$$= c(i_{3}\eta)$$

This completely describes the action of the Steenrod algebra on the \mathbb{F}_2 -cohomology of cofib $i_3\eta$.

(3) If $\alpha: S^4 \to S^2 \vee S^3$ factors through i_2 , writing $\alpha \simeq i_2\beta$ for some β we have an equivalence $\operatorname{cofib} \alpha \simeq \operatorname{cofib} \beta \vee S^3$

and the inclusion of the second factor $S^3 \to \operatorname{cofib} \alpha$ induces an isomorphism on $\mathrm{H}^3(-)$. In particular in this case the Steenrod operation

$$\operatorname{Sq}^2 \colon \operatorname{H}^3(\operatorname{cofib} \alpha; \mathbb{F}_2) \longrightarrow \operatorname{H}^5(\operatorname{cofib} \alpha; \mathbb{F}_2)$$

is trivial.

(4) Let $\alpha \colon S^4 \to S^2 \lor S^3$ factoring through either i_2 or i_3 . Observe that the sum $[i_2, i_3] + \alpha$ factors as

$$S^4 \longrightarrow (S^4)^{\vee 2} \xrightarrow{[i_2,i_3] \vee \alpha} (S^2 \vee S^3)^{\vee 2} \xrightarrow{\nabla} S^2 \vee S^3$$

by definition. In particular, consider the following commutative diagram

and make the following remarks.

• The cofiber sequence

$$S^2 \vee S^3 \longrightarrow X(\alpha) \longrightarrow S^5$$

implies that the reduced (co)homology of $X(\alpha)$ is concentrated in degrees 2, 3 and 5. Denote $[X(\alpha)]$ the unique class in $H_5(X(\alpha))$ lifting the homological fundamental class $[S^5]$ via u. Using the notation $[S^5]$ to denote the cohomological fundamental class as well, the computation

$$u_*([X(\alpha)] \cap u^*[S^5]) = u_*[X(\alpha)] \cap [S^5]$$

$$= [S^5] \cap [S^5]$$
$$= 1$$

implies

$$X(\alpha)] \cap u^* \left[S^5\right] = 1$$

in $H_0(X(\alpha))$. In particular $[X(\alpha)] \cap (-)$ induces isomorphisms

$$\mathrm{H}^{5}(X(\alpha)) \simeq \mathrm{H}_{0}(X(\alpha)) \quad \text{and} \quad \mathrm{H}^{0}(X(\alpha)) \simeq \mathrm{H}_{5}(X(\alpha))$$

In the following, we will also use the notation $[X(\alpha)] := u_*[S^5]$, so that $[X(\alpha)] \cap [X(\alpha)] = 1$.

• Similarly, the cofiber sequence

$$S^2 \vee S^3 \longrightarrow Y(\alpha) \longrightarrow S^5 \vee S^5$$

shows that the reduced (co)homology of $Y(\alpha)$ is also concentrated in degrees 2, 3 and 5. Fix bases

$$\mathrm{H}^{2}(Y(\alpha)) \simeq \mathbb{Z}\lambda, \quad \mathrm{H}^{3}(Y(\alpha)) \simeq \mathbb{Z}\mu \quad \text{and} \quad \mathrm{H}^{5}(Y(\alpha)) \simeq \mathbb{Z}\sigma \oplus \mathbb{Z}\tau$$

such that

 $-\lambda$ and μ lift $[S^2]$ and $[S^3]$ respectively;

 $-(\sigma,\tau)$ lifts the canonical basis of $\mathrm{H}^{5}(S^{5} \vee S^{5})$, so that

$$g^*\sigma = c([i_2, i_3]) = [S^2] \otimes [S^3]$$
 and $h^*\tau = c(\alpha)$

• As a consequence, the map

$$f: X(\alpha) \to Y(\alpha)$$

induces isomorphisms on $H^2(-)$ and $H^3(-)$, and

$$f^*\sigma = f^*\tau = \left[X(\alpha)\right]$$

Under our assumption, α factors either through i_2 or i_3 . This implies that $\operatorname{cofib}(\alpha)$ is of the form $Z \vee S^3$ or $S^2 \vee Z$ for some pointed groupoid Z, and thus

$$h^*\lambda \cdot h^*\mu = 0$$

Since (g, h) induces an isomorphism on $H^{5}(-)$, this shows

$$\lambda \, \cdot \, \mu = \sigma$$

and therefore

$$f^*\lambda \cdot f^*\mu = [X(\alpha)]$$

Since

$$\left(\begin{bmatrix} X(\alpha) \end{bmatrix} \cap f^* \lambda \right) \cap f^* \mu = \begin{bmatrix} X(\alpha) \end{bmatrix} \cap \begin{bmatrix} X(\alpha) \end{bmatrix} = 1$$

the class $[X(\alpha)] \cap f^*\lambda$ must be a generator of $H_3(X(\alpha)) \simeq \mathbb{Z}$. The class $[X(\alpha)] \cap f^*\mu$ is a generator of $H_2(X(\alpha)) \simeq \mathbb{Z}$ for the same reason. Finally, the morphism

$$[X(\alpha)] \cap (-) \colon \mathrm{H}^k(X(\alpha)) \to \mathrm{H}_{5-k}(X(\alpha))$$

is an isomorphism for all k and $X(\alpha)$ satisfies Poincaré duality.

- (5) Let $\alpha \colon S^4 \to S^2 \vee S^3$ be such that one of the following conditions is satisfied
 - (a) α factors through i_2
 - (b) α is homotopic to $i_3\eta$

In particular, the discussion from (4) applies and we reuse notation thereof. To describe the action of the Steenrod algebra on $H^*(Y(\alpha))$, it suffices to compute $\operatorname{Sq}^1(\lambda)$ and $\operatorname{Sq}^2(\mu)$ since the reduced cohomology of $Y(\alpha)$ is concentrated in degree 2, 3 and 5.

• Since the map $S^2 \vee S^3 \to Y(\alpha)$ is an isomorphism on $H^2(-; \mathbb{F}_2)$ and $H^3(-; \mathbb{F}_2)$, it follows that $\operatorname{Sq}^1: \operatorname{H}^2(Y(\alpha); \mathbb{F}_2) \longrightarrow \operatorname{H}^3(Y(\alpha); \mathbb{F}_2)$

is null, or in other words $Sq^1(\lambda) = 0$.

- The map (g,h): $(S^2 \times S^3) \vee \operatorname{cofib} \alpha \to Y(\alpha)$ induces an isomorphism on $\mathrm{H}^5(-;\mathbb{F}_2)$, and $-\operatorname{Sq}^2(g^*\mu) = \operatorname{Sq}^2[S^3] = 0$ by the Cartan formula;
 - if (a) is true, then $\operatorname{cofib} \alpha \simeq Z \vee S^3$ for some pointed groupoid Z, and $\operatorname{Sq}^2(h^*\mu) = 0$;
 - in case (b), the discussion (2) shows that $\operatorname{Sq}^2(h^*\mu) = c(\alpha)$.

Finally

$$\operatorname{Sq}^{1}(f^{*}\lambda) = 0 \qquad \operatorname{Sq}^{2}(f^{*}\mu) = \begin{cases} 0 & \text{if (a)} \\ [X(\alpha)] & \text{if (b)} \end{cases}$$

and this completely describes the Steenrod operations on the cohomology of $X(\alpha)$.