TOPOLOGIE 1V — EXERCISE SHEET 6

MARCUS NICOLAS

The obstruction to orientability. Applying B(—) to the cartesian square of oo-groups
SG ——— G
l J k
x« —————— L/27

yields a cartesian square of pointed groupoids
BSG —— BG

b
¥ — K(Z/22,1)

By definition, the pullback £*6 of 6 along a stable spherical fibration £: B — BG is exactly the obstruction

to the existence of a lift
BSG
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B % BG
or in other words, the obstruction to orientability. Since there exists non-orientable spherical fibrations, the

class 0 € HY(BG;Z/2Z) ~ 7,/27 cannot vanish. Therefore 6 = w;.

Stable Hurewicz. If X is a spectrum, there is a natural comparison morphism
(X ©8S) = m(X ®Z)
induced by the ring map S — Z.
o If £ =S, then this map is the identification
o (SO) ~ H, (SO; Z)
obtained by taking the colimit of the Hurewicz isomorphisms

T (S™) ~ H,, (8™ Z) ~ Ho (5% Z)

e Since mp: Gpd — Set preserves finite products, the adjunction

induces
/\
CGrp(Gpd) =~ Spsq € Ab ~ CGrp(Set)

In particular both composites mo((—) ® S) and mo((—) ® Z) preserve colimits when seen as functors
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Since the smallest full subcategory of Sps( closed under colimits and containing S is Sp, itself, it follows
that the canonical comparison is an isomorphism

mo(X) = mo(X ® Z)
for any connected spectrum X. Equivalently, there is a canonical isomorphism
Tn(X) 2 m (X ® Z)

for any (n — 1)-connected spectrum X.

Exercise 1. Since Stiefel-Whitney classes are stable and natural, it suffices to prove the desired formula

i

Sa’ (w;(p)) = > (0 D wjpkp)wi-r(p)

k=0

for any given real vector bundle p. The proof proceeds by induction on the rank n of p.

e The case n = 0 is clear, since in this case w(p) = 1.

e Assuming that Wu’s second formula holds for rank n vector bundles, we establish that it must also
hold for p of rank n + 1. Since we are working with Fs-coefficients, the splitting principle applies
and we may assume that p splits as

P=qgBA
where A is a line bundle. Observe that the formula trivially holds when ¢ > j as well as in the edge
case i = j. Assuming i < j, compute
Sq' (wj(p)) = Sq’ (w;(q) +wi(Nw;-1(q))
=Sq’ (wJ(Q)) + w1 (\) Sq’ (wj—l(Q)) +wi(N)?Sq" ! (wj—l(Q))

By the induction hypothesis:
(2) Sa’(w;(q)) ==gi%(j+kki1)uy+w(q)ua—k(Q)
(b) un(A)Sinv¢4}qD
) () (g e()

Ms

<j+k -1 (j+£:i—2))ijrk,l(q)wifk(q)

k:o
; i—1
(Z J+k THwjpro1(Qwi—k(q) + Z (j+k;i_1)wj+k(Q)wik1(Q)>
k=0 k=1
< (e 1wj+k-1(Q)lU¢—k(Q)+Z(j+k;i_1)wﬁ+k(Q)wi—k—1(q)>
k=0 k=0
7w1 )\ ]-HCkZ 1) (wj+k 1(q)wi_k(q)+wj+k(q)w¢—k—1(Q))

k=0

Here, the first step uses that the identity (m;fl) = (ZL) + (nfl) holds for 0 < n < m but also
for m = —1 and n = 0.
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() wi(N)?Sa"™ (wj—1(g) = wi(N)?

(]

(j+k;i71)wj+k—l (Qwi—r-1(q)

e
E|
[}

= wi(N)? (j+k;i71)wj+k—1(Q)wi—k—l(Q)
k

Il
<

Finally:

Sq* (w; (p)) = Z (jJrk;ifl) (wjti(q) + w1 (N wjre-1(q)) (wi—k(q) + w1 (N)wi—r—1(q))

Exercise 2. Let £: B — BG be an oriented stable spherical fibration. We proved during last exercise session
that £ admits a Thom isomorphism in Z-cohomology. More explicitly, the composite

Homy (B @ Z: Z) — 9 Homy (B © M(€); Z) ———~=— Homz(M(¢); Z)

C—*(M(€); Z)

*

(=) - u(§)

C*(B;Z)
is an equivalence of coconnective spectra. In particular, the composite

M(Th(€)) -2 BaM(E) 4% Boz

induces an isomorphism on Z-cohomology. Since this is also the case of the unit M(§) — M(§) ® Z, the
induced Z-linear map

M) —— ME)®Z —— BRZ
induces an isomorphism on Z-cohomology as well.
e If B is finite, then
M(€) = colim¢ =~ colim &
is as well, and both M(¢) ® Z and B ® Z are dualizable. Therefore, the map
M(§) © Z B®LZ

Homy, (H()my;()[(&) ® 7,7),7) ———=—— Homyg (H(nn;;(B ®R7L,71),7)
is an equivalence.

e In general, B is a filtered colimit of finite groupoids

B ~ colim B;

el
and

M(&) ~ co}lgimg
~ colim colim &;
iel B,
~ colim M(&;
colim M(&;)
We conclude by taking a filtered colimit on the maps
M(&) ®Z~ B; ® Z
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for i e I.

Conversely if M(§) ® Z ~ B ® Z, then M(§) — B ® Z induces an isomorphism on Z-cohomology and
Thom isomorphism holds.

Exercise 3. Fix E a commutative ring spectrum.

(1) For &: B — Pic(S) a stable spherical fibration, compute
C~* (M(€); E) = Homg (M(€), E)
~ Homp(M(§) ® E, E)
~ Hompg(colimé ® E, E)
~ Hompyun(B,Mod(E)) (§ ® E, E)
and, similarly
C™™(B;E) ~Homg(B® E,E)
~ Hompg(colim E, F)
~ Hompun(B,Mod(E)) (£, E)
Observe now that the following data are equivalent:

(i) a Thom class, in other words an arrow u: M({) — F whose restriction z*u: S — F along any
point 2: * — B is a unit of the commutative ring 7o (F)

(ii) a natural transformation u: £ ® E — E between functors B — Pic(FE)
(iii) a trivialization of the composite £ ® E: B — Pic(S) — Pic(F)
In this case, we obtain a Thom isomorphism in E-cohomology

C—*(B; E) — L ¢ (M(¢); B)

Hom(E, E) “ﬁ Hom({ ® E, E)

(2) The connected component of Pic(F) containing E is exactly BAutg(E). Since Autg(E) is the
subgroupoid of Endg(F) ~ E on invertible connected components, it follows that for n > 0:
. mo(E)* ifn=0
Pic(F)) :=
Tt (Pic(E)) {ﬂ'n (E)  otherwise
For £: B — Pic(S) a rank 0 spherical fibration, the composite

B —% 5 Pie(s) — 227, pie(B)

factors through BAutg(E).

o If E = Fy, then all homotopy groups m,11(Pic(F3)) vanish and there exists an Fa-oriented
Thom class

u(§): M(§) — Fa

and therefore a Thom isomorphism with Fy-coefficients.

e If £ =7 and assuming B connected and pointed, the obstruction to the existence of a Thom
class is exactly the induced map

7T1(B) — Wl(PIC(Z)) ~ Z/2Z

vanishing if and only if £ is orientable, if and only if the first Stiefel-Whitney class w1 (£) with
F5-coefficients vanishes.
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Exercise 4. In both cases, we show that invertible modules are shifts of the unit.

(1)

Let X be an invertible Z-module, with inverse Y. In particular both X and Y are perfect, and
thus are represented by bounded complexes of projective (which here are free since we work over Z)
modules. Fix two such representatives X and Y in Chs_,,(Z) for some m > 0.

The classical tensor product X ® Y is already derived, since both X and Y are cofibrant for
the projective model structure on Chs_,,(Z). Since X and Y are degreewise projective, Kiinneth
formula yields split short exact sequences

0 — é Hy(X) @ Hy_ (V) —— H,(Z) —— é Tory (Hp(X), Hy_j_1(Y)) — 0

k=—o0 k=—o0

for all n, and because Tor; (A, B) is always torsion for Z-modules of finite type A and B, the left
term at n = 0 cannot vanish. Therefore, there exists r such that H,.(X) ® H_,.(Y) ~ Z, and this
implies in turn

H.(X)~H_.(Y)~Z
As an immediate consequence, we obtain H,,_,.(Y) ~ 0 and H,,{,.(X) ~ 0 for n # 0, so that X ~ Z][r]
and Y ~ Z[—r].

Let X be an inversible S-module, and assume without loss of generality that X ® Z ~ Z. Since X
is dualizable, it is (—m)-connective for some m > 0, and stable Hurewicz then implies that X is
connective and yields an identification

mo(X) 2 m(X QZ)~7Z
Since the first map is obtained by the composition
mo(X) =~ mo Homg(S, X)

— 7o Homg (S, X ® Z)

~ mo Homy(Z, X ® Z)

~ mo(X @ Z)
there exists a morphism a: S — X inducing an equivalence after applying (—) ® Z. In particular

(cofiba) ® Z ~ cofiba ® Z
~0

Both S and X are connective so cofib « is connective as well, and stable Hurewicz then implies
cofiba ~ 0. Finally, « is an equivalence S ~ X.
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