TOPOLOGIE 1V — EXERCISE SHEET 5

MARCUS NICOLAS

Joins distribute over sums. Consider two groupoids B and B’ together with spherical fibrations
p,q: B— Gpd and p',¢: B — Gpd
Since the functors (—) x (=) and (=) *(—) are both associative and commutative up to homotopy as functors
Gpd x Gpd — Gpd, we obtain a commutative diagram
(Bx B')x (BxB)

/ T~

A (pxp")x(g%q")
/ / \
Bx B et Gpd
T AxA (p*q)*(p'*q")
\ _—

(B x B)x (B'xB)
and in particular a canonical identification
(pxp) @ (¢ *d)=pog) (' ®q)
As a consequence:
(pxp) "t pT k()
Sifted categories are weakly contractible. If I is a sifted category, for instance filtered, then:
Moo (I) ~ colIim *

~ colim *
IxI

~ Moo (T) x Moo (1)

so that the diagonal map IIo(I) — TIo(I) x II(I) is an equivalence. In particular either projection
Moo () X T (I) — Too(I) must also be invertible. Since I is not empty by assumption, we can paste
cartesian squares

and I (1) ~ *.

Loops and filtered colimits. Since limits and weakly contractible colimits in Gpd, are computed in
Gpd, forming pullbacks in Gpd, commutes with all filtered colimits. In particular, given a filtered diagram
X: I — Gpd,, we have the following cartesian square

colim; QX —— Tl (1)
l J l
Mo (I) — colim; X
1
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Since I (1) ~ *, the canonical comparison map yields an isomorphism
colim QX ~ Q) (colim X )
I T

In other words, the endofunctor 2: Gpd, — Gpd, preserves filtered colimits.

Inverting an endofunctor. Let C a category with sequential colimits, equipped with an endofunctor T
preserving sequential colimits and a natural transformation

«: ide - T
satisfying o7 ~ T« (this condition is not automatic, as one can see on the free abelian group monad on Set
for instance). The full subcategory i: C, C C on those objects = such that a(z): © — T'(x) is an isomorphism
is reflexive, with left adjoint given by
L~ colim (ide =T 5 T% =5 -.+)

Proof. Since T' commutes with filtered colimits and oT ~ Ta, the functor L: C — C indeed factors through
C. and we have a canonical identification e: Li ~ id¢,. Define

n: ide — L
be the structural inclusion into the colimit. It remains to show that the triangular identities
id, idy,
i p" iLi e i and L o LiL 7 L

are satified. The left one is clear, so let us focus on the right one. By definition of 7, the natural transformation

Ln: coimT™ — colim T™+™

m m,n

is induced by the structural maps 7™ — colim,, T™*" for m > 0. Also by definition of €, the composite
colim,, T™ —— colimy,, , T™" LI7AN colim,,, T™

is the identity, where the first map is the inclusion into the colimit at induced by m — (m,0). This is exactly
the desired triangular identity. O

Exercise 1. Let B and B’ be two groupoids. Observe that for two completed Fa-cohomology classes
x € H*(B;F3)" and y € H*(B’;F3)" one has:
Sa(Sa~ () x Sq~" (y)) = SaSq~" («) x SaSq ™" (y)
=Xy
in H*(B x B’;Fy)". In other words, Sq~' satisfies the Cartan formula
Sq~!(z x y) = Sq~ ! (x) x Sq”*(y)

and from there the proof that Wu classes satisfy Cartan formula is the same as for Stiefel-Whitney classes.
Namely, if p and p’ are spherical fibrations over B and B’ respectively, then

v(pxp') =v(p) x v(p)
Furthermore, if B = B’:

vip@p) =v(p) - v(p)
by pulling the previous formula along the diagonal B — B x B.

We can alternatively prove these Cartan formulas using Wu’s first formula and the Cartan formula for
Stiefel-Whitney classes. Indeed, one has

Sq (v(p*p')) =w((p*p) ")
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in H*(B x B';F,)", and it then suffices to apply Sq~* on both sides.

Exercise 2. We begin by computing Hom groupoids in PSp, by observing that PSp is equivalently described
as the full subcategory of diagrams in Gpd, indexed by

NN
NN

such that each e is sent to *. Denoting this indexing poset by I, the decomposition
I~TIgpn Uy Iy y -

yields

Fun(], Gpd*) ~ Fun(IO//l, Gpd*) XGpd, Fun([l//g, Gpd*) XGpd, "
For all i > 0, notice that I;//;11 ~ [1] x [1]. But by what was done in the correction to exercise sheet 1, the
space of morphisms between two commutative squares in Gpd,

X/ ;/} Y’
PRl

-
-

2

— Y

1
Z — W
/7{ A
A

f -
’
g9

!/

L9 oW
is computed as
Homyyj, 1) (O, 0') == Hompyy(f, f') X tomy(£,¢7) Homp (g, 9')
and so is the limit of the following diagram

Hom, (X, X') ——— Hom,(X,Y’) +—— Hom,(Y,Y”)

Hom, (X, Z") ——— Hom, (X, W’) +—— Hom, (Y, W’)

Hom, (Z, Z") —— Hom, (Z, W') «—— Hom, (W, W’)
When Y, Y’, Z and Z’ are contractible, this limit simplifies to
Hom{yjx 1y (0,0') ~ Hom, (X, X') X tom., (x,ow) Hom, (W, W)
In particular, the canonical map
oplaxlim ( Gpd, & Gpd, ) = Fun([1] x [1], Gpd,)

is fully faithful, and its essential image consists exactly of commutative squares of the form
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X — %

| |

* —— Y

Finally, this gives an identification
. Q Q
PSp ~ oplaxlim (Gpd* +— Gpd, — -- )
More concretely, the co-category PSp identifies with the category of sequences (X, ),>0 of pointed groupoids

equipped with maps X,, — QX,,+1. In particular the Hom groupoid Homps, (X,Y") between two prespectra
X and Y is computed as the limit of the following diagram

Hom, (Xo, Yp) Hom, (X,,Y,)
Hom, (X, QY1) Hom* n—1,2Y%) Hom, (X, QY1)

We are now ready to compute the required adjoints:

(1) Consider the functor
psp: Gpd, — PSp
given by the following oplax cone:
Gpd, Gpd, =——— Gpd,
iL N\, \ \\nz RN |
l ] > >

Gpd Gpd, +—5— Gpd, +—5— -+

N o )

For X a pointed groupoid and Y a prespectra, the Hom groupoid from X5, X to Y is computed by
the limit of

Hom, (X, Yp) Hom, (X" X,Y,)
Hom, (X, QY1) Hom, ("1 X, QY,,) Hom, (X" X, QY 41)

and therefore:
Hompsp(El%"SpX, Y) >~ hnﬁ; Hom, (X" X,Y,)
ne
~ Hom, (X, Yp)

because the category N has an initial object. We thus have a Bousfield colocalization

)
EF’Sp

e

Gpd 1 PSp

*

since the unit is the structural identification idgpq, >~ evg o Zf’%p.

(2) Name §,, the structural natural transformation ev,, — Qev, 1 between functors PSp — Gpd,. The
commutative diagram
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PSp PSp ——— PSp
N N N |
Qevy Q81 Q6 Qevipt1  Qnt1 Qevipgo
! | > >
Gpd* Q e Q Gpd* Q Gpd* Q e
defines a translation endofunctor
T: PSp — PSp
Since id: PSp — PSp is induced by the diagram
PSp PSp ——— PSp
AN N
e\‘zo \ 5o ‘ On—1 e\‘/n N S eV i1
! N N~ N
Gpd, Q o Q Gpd, Q Gpd, Q o

one can define by the universal property of PSp a natural transformation
0: idpsp — T

using the natural transformations d,, on each projection. Indeed, the naturality is exactly the data
of commutative squares

5n
ev, ———— Qevyy

l&n LQ(STL-H

Qo +1
Qevpyr ———— Q%evyyo

for n > 0, which we fill by the identity homotopy.

Heuristically, T' sends a sequence (X, )n>0 to the sequence (QXn+1) and for n > 0 the map

n>0’
0(X)y is the structural morphism X,, — QX,,4;. In particular the fullsubategory PSps; C PSp on

those prespectra X such that 6(X) is an isomorphism identifies with Sp.

(a) The natural transformations ev,, o §7 and ev,, o T are by definition both computed as
Q(Sn+1 : Q) eVpt+1 — QQ CVyp42
for n > 0, so that one can construct an homotopy 67 ~ T4.

(b) Since the inclusion PSp C Fun(7, Gpd,) preserves and reflects weakly contractible colimits, this
is in particular the case for filtered colimits. Since the endofunctor 2: Gpd, — Gpd, commutes
with filtered colimits, we conclude that T' also commutes with filtered colimits.

In particular, the above discussion applies, and we obtain a Bousfield localization
L

/\
PSp L Sp

~_

Because 2 commutes with filtered colimits, the right adjoint is w-accessible and thus Sp is compactly
generated!. We also obtain that the spectrification functor L can be computed as the following colimit
in PSp:

L ~ colim (idpgy == T -2 7% 25 ...)
In other words, we have
LX, ~ co}cim Q”“XnHC
for any prespectrum X and n > 0. Composing adjunctions, we finally obtain

lHere, we use that the inclusion PSp C Fun(l, Gpd, ) preserves weakly contractible colimits and so is w-accessible, and that
Fun(I, Gpd,) is compactly generated.
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500
/\
Gpd, L Sp

\_/

e
where the right adjoint preserves filtered colimits. This is neither a localization nor a colocalization.

Since the unit map X — LX is simply the pointwise inclusion
X, — co}cim QanJrk
into the colimit, it induces a chain of identifications
Ta(X) = collim Tatn(Xn)
= C,?Ein Ttk (Xntk)
~ co}bim Tatn (LX)
(LX)

For f: X — Y a map of prespectra, the commutative diagram
7 (X)

(LX)
shows that f induces an isomorphism on 7, if and only if Lf does, and this is the case if and only if

Lf is an equivalence since LX and LY are spectra. In particular L inverts exactly those maps that
are sent by m, to equivalences.

¢

()

e (1Y)

Since both functors
Sp —— PSp —— Fun(I,Gpd,)

preserve limits, it follows that : Sp — Sp is computed pointwise either in PSp or in Fun(Z, Gpd,).
Therefore

UX)ny1 = QX
~ X,
for any spectrum X, and 2 sends a spectrum Xy, X1, Xo,... to the shifted sequence QX, Xo, X1, . ...
For X a compact object in Gpd, and Y another pointed groupoid:
Homg, (XX, 2*°Y) ~ Hom, (X, Q°X*Y)
~ Hom, (X7 colim Q"Z"Y)
n
~ colim Hom, (X" X, X"Y")

Since SO is compact, we obtain

Endsg,(S) ~ colim End..(S™)

But Aut.(S™) =, Aut, (S™*1) is an isomorphism on connected components for all n, and therefore
Autg, (S) ~ co}lim Aut, (S™)
~ co}lim G(n)
~G

and BG identifies with the subcategory BAutg,(S) of Sp. Furthermore, the proof also shows that
the following squares
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BG(n) —— BG

[

Gpd, =" Sp

commute for n > 0, where the two vertical maps are subcategory inclusions.

Exercise 3. Fix a stable spherical fibration £: B — BG.

(1) For n > 0, consider the cartesian square
By —* By B
|- |-

én Ent1

l !

BG(n) —=— BG(n+1) —— BG
The homotopy X&, ~ i*€,4+1 induces a pointed map
YTh(&,) ~ Th(ZE,) — Th(&ni1)

or equivalently
Th(€,) = QTh(1)

The resulting prespectrum is denoted Th(). Writing the Thom space as a colimit, this construction
can be made functorial in § so that we actually have a functor Th: Gpd pg — PSp.

(2) To prove the colimit formula for M(€) :~ L(Th(&)), we distinguish two cases

o If £ factorizes as
B — 5 BG(n) == BG
for some n, then
M(§) ~ X=7" Th(&n)

~ ¥ " colim&,
B

~ colim 7"
colim én

~ coli
COémf

since X7 1~ (O"3*° is cocontinuous.
e In general, then observe that
Th(§) ~ colim Th(X*7"¢,)

n

Indeed, filtered colimits are computed pointwise in PSp, and this diagram is pointwise eventually
constant. Using now that L is a left adjoint:

M(€) ~ collim L(Th(Z>7"¢&,))

~ colim colim 37" &,
n

n

~ colim ¢
colim,, B,

~ colim
lim §

The last step uses that B ~ colim,, B,,, but this is a consequence of BG ~ colim,, BG(n) and of
the universality of weakly contractible colimits in Gpd,.
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(3) Let C denote any category with B-colimits, and fix a functor F: B — C. Then the diagonal map
B — B x B induces a morphism in C:

colim F' — colim F' o pry o~ B ® colim F
B BxB B
Specializing to our situation, we have a well defined diagonal map
A¢: M(€) - B M(E)
in Sp.

Exercise 4. Fix an oriented stable fibration £: B — BG.

(1) By adjunction
HY(M(¢)) = mo Homsy, (M(§), Z)
~ 7o Hompg,(Th(§), Z)
For n > 0, the following diagram commutes
Th(&n) — QTh(&nt1)

Ju(gn) Ju(fan)

K(Z,n) =—— QK(Z,n+1)
Indeed, this is evident if B,, is empty, and if not, consider the restrictions
S+l ~ ¥ Th(S" ! — %) —— YTh(¢,) —— Th(&,41)
induced by the inclusion of any point * — B,,. The classes u(§,,) therefore assemble into a map
u(©): M(§) = Z

(2) Given a point x: * — B, consider the following diagram

Th(¢(z)) — M({(z)) =——=S

S

Th(g) —— M(&) —=

Z

Since restriction along the left most map sends each w(&,) on [S"] as soon as B, contains z, it
follows that

M(2)*u() ~ 1
in S.

(3) We distinguish between two cases.

e Assume first that £ factors through BG(n) for some n > 1, and compute for k > 0:
H*(M(€); Z) ~ m Homps, (Th(¢), SFZ)
~ ( Jim Hom. (Th(&,). K(Z.m + k)))
— lir>n mo Hom, (X" "Th(¢,), K(Z, m + k))
where the second lines uses the computation of Hom groupoids in PSp and the fact that Z is

a spectrum. But by Thom isomorphism, the last sequential limit is constant on H*(B;Z), so
that the last map admits an inverse. Finally one obtains an identification

H"(B; Z) ~ H*(M(€); Z)

More explicitly, it is given by taking the limit of the following (eventually constant) cone
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H*(B;Z) H*(B; Z)

| |
(=) - u(én) ‘ (=) u(ém)

il

H"**(Th(¢,); Z) H"H*(Th(§n); Z2) === ---
Unwinding definitions, it is given by applying 7_x(—) to the following composite

Homy (B © Z, Z) —9"_, Homy (B ® M(£),Z) —— < Homy(M(£),Z)

C—*(M(€); Z)

(=) -u(&)

C(B;Z)
which must therefore be an equivalence between coconnective spectra.

In general, the first case implies that we have equivalences
(=) - u(€n): CT*(Bpi Z) = CT*(M(27"¢,); Z)
natural in n. Taking limits on both sides shows that
(=) - w(§): CT7(B;Z) ~ CT*(M(§): Z)

and this is exactly Thom isomorphism.
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