
TOPOLOGIE IV – EXERCISE SHEET 5

MARCUS NICOLAS

Joins distribute over sums. Consider two groupoids B and B′ together with spherical fibrations

p, q : B → Gpd and p′, q′ : B′ → Gpd

Since the functors (−)×(−) and (−)⋆(−) are both associative and commutative up to homotopy as functors
Gpd×Gpd→ Gpd, we obtain a commutative diagram

(B ×B′)× (B ×B′)

B ×B′ Gpd

(B ×B)× (B′ ×B′)

(p⋆p′)⋆(q⋆q′)∆

∆×∆ (p⋆q)⋆(p′⋆q′)

and in particular a canonical identification

(p ⋆ p′)⊕ (q′ ⋆ q′) ≃ (p⊕ q) ⋆ (p′ ⊕ q′)

As a consequence:
(p ⋆ p′)−1 ≃ p−1 ⋆ (p′)−1

Sifted categories are weakly contractible. If I is a sifted category, for instance filtered, then:

Π∞(I) ≃ colim
I
∗

≃ colim
I×I

∗

≃ Π∞(I)×Π∞(I)

so that the diagonal map Π∞(I) → Π∞(I) × Π∞(I) is an equivalence. In particular either projection
Π∞(I) × Π∞(I) → Π∞(I) must also be invertible. Since I is not empty by assumption, we can paste
cartesian squares

Π∞(I) Π∞(I)×Π∞(I) Π∞(I)

∗ Π∞(I) ∗

⌟ ⌟

and Π∞(I) ≃ ∗.

Loops and filtered colimits. Since limits and weakly contractible colimits in Gpd∗ are computed in
Gpd, forming pullbacks in Gpd∗ commutes with all filtered colimits. In particular, given a filtered diagram
X : I → Gpd∗, we have the following cartesian square

colimI ΩX Π∞(I)

Π∞(I) colimI X

⌟

1
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Since Π∞(I) ≃ ∗, the canonical comparison map yields an isomorphism

colim
I

ΩX ≃ Ω
(
colim

I
X
)

In other words, the endofunctor Ω: Gpd∗ → Gpd∗ preserves filtered colimits.

Inverting an endofunctor. Let C a category with sequential colimits, equipped with an endofunctor T
preserving sequential colimits and a natural transformation

α : idC → T

satisfying αT ≃ Tα (this condition is not automatic, as one can see on the free abelian group monad on Set
for instance). The full subcategory i : Cα ⊆ C on those objects x such that α(x) : x→ T (x) is an isomorphism
is reflexive, with left adjoint given by

L :≃ colim
(
idC

α−−→ T
α−−→ T 2 α−−→ · · ·

)
Proof. Since T commutes with filtered colimits and αT ≃ Tα, the functor L : C → C indeed factors through
Cα and we have a canonical identification ε : Li ≃ idCα . Define

η : idC → iL

be the structural inclusion into the colimit. It remains to show that the triangular identities

i iLi i

idi

ηi iε
and L LiL L

idL

Lη εL

are satified. The left one is clear, so let us focus on the right one. By definition of η, the natural transformation

Lη : colim
m

Tm −→ colim
m,n

Tm+n

is induced by the structural maps Tm −→ colimn T
m+n for m ≥ 0. Also by definition of ε, the composite

colimm Tm colimm,n T
m+n colimm TmεL

is the identity, where the first map is the inclusion into the colimit at induced by m 7→ (m, 0). This is exactly
the desired triangular identity. □

Exercise 1. Let B and B′ be two groupoids. Observe that for two completed F2-cohomology classes
x ∈ H∗(B;F2)

∧ and y ∈ H∗(B′;F2)
∧ one has:

Sq(Sq−1(x)× Sq−1(y)) = Sq Sq−1(x)× Sq Sq−1(y)

= x× y

in H∗(B ×B′;F2)
∧. In other words, Sq−1 satisfies the Cartan formula

Sq−1(x× y) = Sq−1(x)× Sq−1(y)

and from there the proof that Wu classes satisfy Cartan formula is the same as for Stiefel–Whitney classes.
Namely, if p and p′ are spherical fibrations over B and B′ respectively, then

v(p ⋆ p′) = v(p)× v(p′)

Furthermore, if B ≡ B′:
v(p⊕ p′) = v(p) · v(p′)

by pulling the previous formula along the diagonal B → B ×B.

We can alternatively prove these Cartan formulas using Wu’s first formula and the Cartan formula for
Stiefel–Whitney classes. Indeed, one has

Sq
(
v(p ⋆ p′)

)
= w

(
(p ⋆ p′)−1

)
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= w
(
p−1 ⋆ (p′)−1

)
= w

(
p−1

)
× w

(
(p′)−1

)
= Sq

(
v(p)

)
× Sq

(
v(p′)

)
= Sq

(
v(p)× v(p′)

)
in H∗(B ×B′;F2)

∧, and it then suffices to apply Sq−1 on both sides.

Exercise 2. We begin by computing Hom groupoids in PSp, by observing that PSp is equivalently described
as the full subcategory of diagrams in Gpd∗ indexed by

• •

0 1 · · ·

• •
such that each • is sent to ∗. Denoting this indexing poset by I, the decomposition

I ≃ I0//1 ⨿1 I1//2 ⨿2 · · ·
yields

Fun(I,Gpd∗) ≃ Fun(I0//1,Gpd∗)×Gpd∗ Fun(I1//2,Gpd∗)×Gpd∗ · · ·
For all i ≥ 0, notice that Ii//i+1 ≃ [1]× [1]. But by what was done in the correction to exercise sheet 1, the
space of morphisms between two commutative squares in Gpd∗

X ′ Y ′

X Y

Z ′ W ′

Z W

f ′

f

g′

g

is computed as

Hom[1]×[1]

(
□,□′) ≃ Hom[1](f, f

′)×Hom[1](f,g′) Hom[1](g, g
′)

and so is the limit of the following diagram

Hom∗(X,X ′) Hom∗(X,Y ′) Hom∗(Y, Y
′)

Hom∗(X,Z ′) Hom∗(X,W ′) Hom∗(Y,W
′)

Hom∗(Z,Z
′) Hom∗(Z,W

′) Hom∗(W,W ′)

When Y , Y ′, Z and Z ′ are contractible, this limit simplifies to

Hom[1]×[1]

(
□,□′) ≃ Hom∗(X,X ′)×Hom∗(X,ΩW ′) Hom∗(W,W ′)

In particular, the canonical map

oplaxlim
(
Gpd∗

Ω←−− Gpd∗
)
→ Fun([1]× [1],Gpd∗)

is fully faithful, and its essential image consists exactly of commutative squares of the form
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X ∗

∗ Y

Finally, this gives an identification

PSp ≃ oplaxlim
(
Gpd∗

Ω←−− Gpd∗
Ω←−− · · ·

)
More concretely, the∞-category PSp identifies with the category of sequences (Xn)n≥0 of pointed groupoids
equipped with maps Xn → ΩXn+1. In particular the Hom groupoid HomPSp(X,Y ) between two prespectra
X and Y is computed as the limit of the following diagram

Hom∗(X0, Y0) · · · Hom∗(Xn, Yn) · · ·

Hom∗(X0,ΩY1) Hom∗(Xn−1,ΩYn) Hom∗(Xn,ΩYn+1)

···

We are now ready to compute the required adjoints:

(1) Consider the functor

Σ∞
PSp : Gpd∗ → PSp

given by the following oplax cone:

Gpd∗ · · · Gpd∗ Gpd∗ · · ·

Gpd∗ · · · Gpd∗ Gpd∗ · · ·

id ···η ΣnηΣn−1
Σn+1ηΣn

Ω Ω Ω Ω

For X a pointed groupoid and Y a prespectra, the Hom groupoid from Σ∞
PSpX to Y is computed by

the limit of

Hom∗(X,Y0) · · · Hom∗(Σ
nX,Yn) · · ·

Hom∗(X,ΩY1) Hom∗(Σ
n−1X,ΩYn) Hom∗(Σ

nX,ΩYn+1)

···

and therefore:

HomPSp(Σ
∞
PSpX,Y ) ≃ lim

n∈N
Hom∗(Σ

nX,Yn)

≃ Hom∗(X,Y0)

because the category N has an initial object. We thus have a Bousfield colocalization

Gpd∗ PSp

Σ∞
PSp

⊣

ev0

since the unit is the structural identification idGpd∗ ≃ ev0 ◦ Σ∞
PSp.

(2) Name δn the structural natural transformation evn → Ωevn+1 between functors PSp→ Gpd∗. The
commutative diagram
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PSp · · · PSp PSp · · ·

Gpd∗ · · · Gpd∗ Gpd∗ · · ·

Ωev1 ···Ωδ1 Ωevn+1Ωδn Ωevn+2Ωδn+1

Ω Ω Ω Ω

defines a translation endofunctor

T : PSp→ PSp

Since id : PSp→ PSp is induced by the diagram

PSp · · · PSp PSp · · ·

Gpd∗ · · · Gpd∗ Gpd∗ · · ·

ev0 ···δ0 evnδn−1 evn+1δn

Ω Ω Ω Ω

one can define by the universal property of PSp a natural transformation

δ : idPSp → T

using the natural transformations δn on each projection. Indeed, the naturality is exactly the data
of commutative squares

evn Ωevn+1

Ωevn+1 Ω2 evn+2

δn

δn Ωδn+1

Ωδn+1

for n ≥ 0, which we fill by the identity homotopy.
Heuristically, T sends a sequence (Xn)n≥0 to the sequence

(
ΩXn+1

)
n≥0

, and for n ≥ 0 the map

δ(X)n is the structural morphism Xn → ΩXn+1. In particular the fullsubategory PSpδ ⊂ PSp on
those prespectra X such that δ(X) is an isomorphism identifies with Sp.

(a) The natural transformations evn ◦ δT and evn ◦ Tδ are by definition both computed as

Ωδn+1 : Ω evn+1 → Ω2 evn+2

for n ≥ 0, so that one can construct an homotopy δT ≃ Tδ.

(b) Since the inclusion PSp ⊂ Fun(I,Gpd∗) preserves and reflects weakly contractible colimits, this
is in particular the case for filtered colimits. Since the endofunctor Ω: Gpd∗ → Gpd∗ commutes
with filtered colimits, we conclude that T also commutes with filtered colimits.

In particular, the above discussion applies, and we obtain a Bousfield localization

PSp Sp

L

⊣

Because Ω commutes with filtered colimits, the right adjoint is ω-accessible and thus Sp is compactly
generated1. We also obtain that the spectrification functor L can be computed as the following colimit
in PSp:

L ≃ colim
(
idPSp

δ−−→ T
δ−−→ T 2 δ−−→ · · ·

)
In other words, we have

LXn ≃ colim
k

ΩkXn+k

for any prespectrum X and n ≥ 0. Composing adjunctions, we finally obtain

1Here, we use that the inclusion PSp ⊂ Fun(I,Gpd∗) preserves weakly contractible colimits and so is ω-accessible, and that

Fun(I,Gpd∗) is compactly generated.
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Gpd∗ Sp

Σ∞

⊣

Ω∞

where the right adjoint preserves filtered colimits. This is neither a localization nor a colocalization.

(3) Since the unit map X → LX is simply the pointwise inclusion

Xn → colim
k

ΩkXn+k

into the colimit, it induces a chain of identifications

π∗(X) ≃ colim
n

π∗+n(Xn)

≃ colim
n+k

π∗+n+k(Xn+k)

≃ colim
n

π∗+n(LXn)

≃ π∗(LX)

For f : X → Y a map of prespectra, the commutative diagram

π∗(X) π∗(Y )

π∗(LX) π∗(LY )

f∗

Lf∗

shows that f induces an isomorphism on π∗ if and only if Lf does, and this is the case if and only if
Lf is an equivalence since LX and LY are spectra. In particular L inverts exactly those maps that
are sent by π∗ to equivalences.

(4) Since both functors

Sp PSp Fun(I,Gpd∗)

preserve limits, it follows that Ω: Sp→ Sp is computed pointwise either in PSp or in Fun(I,Gpd∗).
Therefore

Ω(X)n+1 ≃ ΩXn+1

≃ Xn

for any spectrumX, and Ω sends a spectrumX0, X1, X2, . . . to the shifted sequence ΩX0, X0, X1, . . . .

(5) For X a compact object in Gpd∗ and Y another pointed groupoid:

HomSp(Σ
∞X,Σ∞Y ) ≃ Hom∗(X,Ω∞Σ∞Y )

≃ Hom∗
(
X, colim

n
ΩnΣnY

)
≃ colim

n
Hom∗(Σ

nX,ΣnY )

Since S0 is compact, we obtain

EndSp(S) ≃ colim
n

End∗(S
n)

But Aut∗(S
n)

Σ−−→ Aut∗(S
n+1) is an isomorphism on connected components for all n, and therefore

AutSp(S) ≃ colim
n

Aut∗(S
n)

≃ colim
n

G(n)

≃ G

and BG identifies with the subcategory BAutSp(S) of Sp. Furthermore, the proof also shows that
the following squares
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BG(n) BG

Gpd∗ SpΣ∞−n

commute for n ≥ 0, where the two vertical maps are subcategory inclusions.

Exercise 3. Fix a stable spherical fibration ξ : B → BG.

(1) For n ≥ 0, consider the cartesian square

Bn Bn+1 B

BG(n) BG(n+ 1) BG

i

ξn

⌟
ξn+1

⌟

Σ

The homotopy Σξn ≃ i∗ξn+1 induces a pointed map

ΣTh(ξn) ≃ Th(Σξn)→ Th(ξn+1)

or equivalently

Th(ξn)→ ΩTh(ξn+1)

The resulting prespectrum is denoted Th(ξ). Writing the Thom space as a colimit, this construction
can be made functorial in ξ so that we actually have a functor Th: Gpd/BG → PSp.

(2) To prove the colimit formula for M(ξ) :≃ L
(
Th(ξ)

)
, we distinguish two cases

• If ξ factorizes as

B BG(n) BG
ξn Σ∞−n

for some n, then

M(ξ) ≃ Σ∞−n Th(ξn)

≃ Σ∞−n colim
B

ξn

≃ colim
B

Σ∞−n ξn

≃ colim
B

ξ

since Σ∞−n :≃ ΩnΣ∞ is cocontinuous.

• In general, then observe that

Th(ξ) ≃ colim
n

Th(Σ∞−n ξn)

Indeed, filtered colimits are computed pointwise in PSp, and this diagram is pointwise eventually
constant. Using now that L is a left adjoint:

M(ξ) ≃ colim
n

L
(
Th(Σ∞−n ξn)

)
≃ colim

n
colim
Bn

Σ∞−n ξn

≃ colim
colimn Bn

ξ

≃ colim
B

ξ

The last step uses that B ≃ colimn Bn, but this is a consequence of BG ≃ colimn BG(n) and of
the universality of weakly contractible colimits in Gpd∗.
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(3) Let C denote any category with B-colimits, and fix a functor F : B → C. Then the diagonal map
B → B ×B induces a morphism in C:

colim
B

F → colim
B×B

F ◦ pr2 ≃ B ⊗ colim
B

F

Specializing to our situation, we have a well defined diagonal map

∆ξ : M(ξ)→ B ⊗M(ξ)

in Sp.

Exercise 4. Fix an oriented stable fibration ξ : B → BG.

(1) By adjunction

H0(M(ξ)) ≃ π0 HomSp(M(ξ),Z)
≃ π0 HomPSp(Th(ξ),Z)

For n ≥ 0, the following diagram commutes

Th(ξn) ΩTh(ξn+1)

K(Z, n) ΩK(Z, n+ 1)

u(ξn) u(ξn+1)

Indeed, this is evident if Bn is empty, and if not, consider the restrictions

Sn+1 ≃ ΣTh(Sn−1 → ∗) ΣTh(ξn) Th(ξn+1)

induced by the inclusion of any point ∗ → Bn. The classes u(ξn) therefore assemble into a map

u(ξ) : M(ξ)→ Z

(2) Given a point x : ∗ → B, consider the following diagram

Th(ξ(x)) M(ξ(x)) S

Th(ξ) M(ξ) Z

M(i)

u(ξ)

Since restriction along the left most map sends each u(ξn) on
[
Sn

]
as soon as Bn contains x, it

follows that
M(i)∗u(ξ) ≃ 1

in S.

(3) We distinguish between two cases.

• Assume first that ξ factors through BG(n) for some n ≥ 1, and compute for k ≥ 0:

Hk(M(ξ);Z) ≃ π0 HomPSp

(
Th(ξ),ΣkZ

)
≃ π0

(
lim
m≥n

Hom∗
(
Th(ξm),K(Z,m+ k)

))
→ lim

m≥n
π0 Hom∗

(
Σm−nTh(ξn),K(Z,m+ k)

)
where the second lines uses the computation of Hom groupoids in PSp and the fact that Z is
a spectrum. But by Thom isomorphism, the last sequential limit is constant on Hk(B;Z), so
that the last map admits an inverse. Finally one obtains an identification

Hk(B;Z) ≃ Hk(M(ξ);Z)
More explicitly, it is given by taking the limit of the following (eventually constant) cone
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Hk(B;Z) · · · Hk(B;Z) · · ·

Hn+k(Th(ξn);Z) · · · Hm+k
(
Th(ξm);Z

)
· · ·

(−) ·u(ξn) ··· (−) ·u(ξm)

Unwinding definitions, it is given by applying π−k(−) to the following composite

HomZ(B ⊗ Z,Z) HomZ(B ⊗M(ξ),Z) HomZ(M(ξ),Z)

C−∗(B;Z) C−∗(M(ξ);Z)

u(ξ)∗ ∆∗
ξ

(−) ·u(ξ)

which must therefore be an equivalence between coconnective spectra.

• In general, the first case implies that we have equivalences

(−) · u(ξn) : C−∗(Bn;Z) ≃ C−∗(M(Σ∞−nξn);Z
)

natural in n. Taking limits on both sides shows that

(−) · u(ξ) : C−∗(B;Z) ≃ C−∗(M(ξ);Z)
and this is exactly Thom isomorphism.


	Joins distribute over sums
	Sifted categories are weakly contractible
	Loops and filtered colimits
	Inverting an endofunctor

