TOPOLOGIE IV – EXERCISE SHEET 4

MARCUS NICOLAS

Quaternionification. The division \mathbb{R} -algebra \mathbb{H} is canonically a (\mathbb{C}, \mathbb{H}) -bimodule, so that $V \otimes_{\mathbb{C}} \mathbb{H}$ inherits a canonical structure of right \mathbb{H} -module for any \mathbb{C} -module V. Observe that, because ij = -ji in \mathbb{H} , the formula

$$v \otimes (x + jy) \mapsto (vx, vy)$$

defines a (\mathbb{C}, \mathbb{C}) -linear isomorphism $V \otimes_{\mathbb{C}} \mathbb{H} \simeq V \oplus \overline{V}$, where $\overline{V} :\simeq V \otimes_{\mathbb{C}} \overline{\mathbb{C}}$.

Monoid actions and modules. Fix a monoid object M in Gpd, and let $(\mathcal{C}, \otimes, \mathbb{1})$ be a presentably symmetric monoidal category, or in other terms an commutative algebra in Pr^{L} . In particular \mathcal{C} receives a unique symmetric monoidal functor from the unit

$$\mathbb{1} \otimes (-) \colon \operatorname{Gpd} \to \mathcal{C}$$

and $\mathbb{1}[M] :\simeq \mathbb{1} \otimes M$ inherits a canonical algebra structure from M. Under our assumptions, the adjunction

$$\mathcal{C} \simeq \operatorname{LMod}(1) \underbrace{\vdash}_{\operatorname{forget}} \operatorname{LMod}(1[M])$$

exists and is monadic, so that

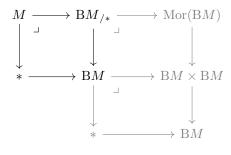
 $\operatorname{LMod}(\mathbb{1}[M]) \simeq \operatorname{Alg}((-) \otimes \mathbb{1}[M])$

where $(-) \otimes \mathbb{1}[M] \colon \mathcal{C} \to \mathcal{C}$ denotes the monad induced by the adjunction.

On the other hand, if BM denotes the classifying category of M, then the adjunction

$$\mathcal{C} \underbrace{\vdash}_{\text{ev}_{*}} \operatorname{Fun}(\mathcal{B}M,\mathcal{C})$$

is again monadic and one identifies the left adjoint with $(-) \otimes M$ using the pointwise formula for left Kan extensions and pasting cartesian squares



But observe that

$$(-) \otimes \mathbb{1}[M] \simeq (-) \otimes (\mathbb{1} \otimes M)$$

 $\simeq (-) \otimes M$

and this is an isomorphism of monads since the algebra structure of $\mathbb{1}[M]$ is inherited from M.

In particular we have a canonical identification

$$\operatorname{Fun}(\operatorname{B}M, \mathcal{C}) \simeq \operatorname{LMod}(\mathbb{1}[M])$$

The left-hand side consists of objects endowed with an *M*-action, while the right-hand side consists of modules over the algebra $\mathbb{1}[M]$ in the symmetric monoidal category \mathcal{C} .

As a corollary, we have for instance an identification

 $\operatorname{Fun}(X, \operatorname{Sp}) \simeq \operatorname{LMod}(\mathbb{S}[\Omega X])$

for any connected pointed groupoid X.

Cohomology of groups. If E is an S-algebra and G is a group object in Gpd, then

$$C^{-*}(BG; E) \simeq Hom_{\mathbb{S}}(\Sigma^{+}_{+}BG, E)$$

$$\simeq Hom_{\mathbb{S}}(\mathbb{S} \otimes BG, E)$$

$$\simeq Hom_{E}(E \otimes BG, E)$$

$$\simeq Hom_{Fun}(BG, LMod(E))(\underline{E}, \underline{E})$$

$$\simeq Hom_{E[C]}(E, E)$$

and in particular

$$\mathrm{H}^*(\mathrm{B}G; E) \simeq \mathrm{Ext}^*_{E[G]}(E, E)$$

Equivalently

$$\mathrm{H}^*(X; E) \simeq \mathrm{Ext}^*_{E[\Omega X]}(E, E)$$

for any pointed connected groupoid X.

Exercise 1. For $n \ge 1$, observe that

$$Th(TS^{n}) \simeq Th_{*}(\Sigma TS^{n})$$
$$\simeq Th_{*}(\varepsilon^{\oplus (n+1)})$$

and the sections of the trivial bundle $\varepsilon^{\oplus(n+1)} \simeq \operatorname{pr}_2: S^n \times S^n \to S^n$ obtained by stabilizing the tangent bundle fiberwise are the maps $\Delta :\simeq (\operatorname{id}, \operatorname{id})$ and $(\alpha, \operatorname{id})$ where $\alpha: S^n \simeq S^n$ is the antipodal map.

In particular the Thom space sits canonically inside a cocartesian square

Since $(\alpha, id): S^n \to S^n \times S^n$ is right inverse to the second projection, the long exact sequence in integral cohomology splits and yields an exact sequence of graded rings

$$0 \longrightarrow \mathrm{H}^{*}(\mathrm{T}S^{n}) \xrightarrow{p^{*}} \mathrm{H}^{*}(S^{n}) \otimes \mathrm{H}^{*}(S^{n}) \xrightarrow{(\alpha, \mathrm{id})^{*}} \mathrm{H}^{*}(S^{n}) \longrightarrow 0$$

In particular $H^n(TS^n)$ is identified with the kernel of the morphism

$$\mathrm{H}^{n}(S^{n}) \oplus \mathrm{H}^{n}(S^{n}) \longrightarrow \mathrm{H}^{n}(S^{n})$$

sending $[S^n]$ and $[S^n]$ to $(-1)^{n+1}[S^n]$ and $[S^n]$ respectively. Observe now that the map

$$S^n \simeq \operatorname{Th}(S^{n-1} \to *) \to \operatorname{Th}(\mathrm{T}S^n)$$

is given by the following composite¹

$$S^n \xrightarrow{(\mathrm{id},*)} S^n \times S^n \xrightarrow{p} \mathrm{Th}(\mathrm{T}S^n)$$

¹If we had chosen to present $\text{Th}(\text{T}S^n)$ as $(S^n \times S^n)/\Delta$, the map p would be different and we would have had to use $(\alpha, *) \to S^n \times S^n$ instead.

This gives the sign of the Thom class, namely

$$p^*u(\mathbf{T}S^n) = \begin{bmatrix} S^n \end{bmatrix} + (-1)^n \begin{bmatrix} S^n \end{bmatrix}$$

and therefore

$$e(\mathbf{T}S^n) = \Delta^* p^* u(\mathbf{T}S^n)$$
$$= (1 + (-1)^n) [S^n]$$

Exercise 2. We show by induction on $d \ge 1$ that

$$\mathrm{H}^*(\mathrm{BSO}(d);\mathbb{F}_2)\simeq\mathbb{F}_2[w_2,\ldots,w_d]$$

which implies $H^*(BSO; \mathbb{F}_2) \simeq \mathbb{F}_2[w_2, w_3, \dots]$ by passing to the limit.

- observe that $BSO(1) \simeq *$ has cohomology ring \mathbb{F}_2
- assuming that the statement holds at rank d, consider the (oriented) fiber sequence

$$S^d \simeq SO(d+1)/SO(d) \longrightarrow BSO(d) \xrightarrow{p} BSO(d+1)$$

and the induced Gysin sequence (with \mathbb{F}_2 -coefficients)

$$\cdots \longrightarrow \mathrm{H}^{k-d-1}(\mathrm{BSO}(d+1)) \xrightarrow{w_{d+1}} \mathrm{H}^k(\mathrm{BSO}(d+1)) \xrightarrow{p^*} \mathrm{H}^k(\mathrm{BSO}(d)) \longrightarrow \cdots$$

By the induction hypothesis, the graded ring $H^*(BSO(d))$ is polynomial on the classes w_2, \ldots, w_d . Since the Stiefel–Whitney classes are stable, they are pulled back from $H^*(BSO)$ and in particular from $H^*(BSO(d+1))$. This implies that p^* has a section, and we thus obtain a split short exact sequence

$$0 \longrightarrow \mathrm{H}^{*}(\mathrm{BSO}(d+1))[d+1] \xrightarrow{w_{d+1}} \mathrm{H}^{*}(\mathrm{BSO}(d+1)) \xrightarrow{p^{*}} \mathrm{H}^{*}(\mathrm{BSO}(d)) \longrightarrow 0$$

of graded rings. It follows by induction that the canonical map

$$\mathbb{F}_2[w_2,\ldots,w_{d+1}] \to \mathrm{H}^*(\mathrm{BSO}(d+1))$$

is an isomorphism.

Exercise 3. We prove by induction on d that there exists classes $x_k \in H^{4k}(BSp)$ for $k \ge 1$ and canonical identifications

$$\mathrm{H}^*(\mathrm{BSp}(d);\mathbb{Z})\simeq\mathbb{Z}[x_1,\ldots,x_d]$$

of graded rings. Observe that it is sufficient to construct x_d in $\mathrm{H}^{4d}(\mathrm{BSp}(d))$ at each stage $d \geq 1$ since the structural map $\mathrm{BSp}(d) \to \mathrm{BSp}$ is (4d+3)-connected².

• for the base case d = 1, observe that $BSp(1) \simeq \mathbb{P}^{\infty}(\mathbb{H})$ has cohomology ring $\mathbb{Z}[t]$ with a generator t in degree 4. Since the integral Euler class x_1 of the oriented spherical fibration

$$S^3 \longrightarrow * \longrightarrow BSp(1)$$

is also a generator of $\mathrm{H}^4(\mathrm{BSp}(1)) \simeq \mathbb{Z}$, it follows that

$$\mathrm{H}^*(\mathrm{BSp}(1)) \simeq \mathbb{Z}[x_1]$$

• assuming that the statement holds at rank d, consider the following fiber sequence

$$S^{4d+3} \simeq \operatorname{Sp}(d+1)/\operatorname{Sp}(d) \longrightarrow \operatorname{BSp}(d) \xrightarrow{p} \operatorname{BSp}(d+1)$$

which is canonically oriented since BSp(d+1) is simply connected. Define

 $x_{d+1} \in \mathrm{H}^{4(d+1)}(\mathrm{BSp}(d+1)) \simeq \mathrm{H}^{4(d+1)}(\mathrm{BSp})$

to be its integral Euler class, and consider the Gysin sequence

²This is exactly where the same argument with BSO instead breaks down, since the map $BSO(d) \rightarrow BSO$ is only *d*-connected.

 $\cdots \longrightarrow \mathrm{H}^{k-4(d+1)}(\mathrm{BSp}(d+1)) \xrightarrow{x_{d+1}} \mathrm{H}^{k}(\mathrm{BSp}(d+1)) \xrightarrow{p^{*}} \mathrm{H}^{k}(\mathrm{BSp}(d)) \longrightarrow \cdots$

By the induction hypothesis, the graded ring $H^*(BSp(d))$ is polynomial on the classes x_1, \ldots, x_d all living in $H^*(BSp(d+1))$. In particular p^* admits a section and we get from the above a split exact sequence

$$0 \longrightarrow \mathrm{H}^{*}(\mathrm{BSp}(d+1))[4(d+1)] \xrightarrow{x_{d+1}} \mathrm{H}^{*}(\mathrm{BSp}(d+1)) \xrightarrow{p^{*}} \mathrm{H}^{*}(\mathrm{BSp}(d)) \longrightarrow 0$$

of graded rings. It follows by induction on the degree that the map

$$\mathbb{Z}[x_1,\ldots,x_{d+1}] \to \mathrm{H}^*(\mathrm{BSp}(d+1))$$

is an isomorphism.

We can now tackle the reminding questions.

1) Passing to the limit, we get

$$\mathrm{H}^*(\mathrm{BSp}) \simeq \mathbb{Z}[x_1, x_2, \dots]$$

Observe that the reduction modulo 2 of x_d for some $d \ge 1$ is the unoriented Euler class of the spherical fibration $BSp(d-1) \to BSp(d)$. In other words, the map

 $H^*(BSp) \to H^*(BSp; \mathbb{F}_2)$

sends each x_d to w_{4d} , where the Stiefel–Whitney classes are pulled back along the map

$$BSp \simeq \operatorname{colim}_{d} BSp(d) \to \operatorname{colim}_{d} BO(4d) \simeq BO$$

2) The forgetful map $\mathfrak{v} \colon BSp \to BU$ sits for all $d \ge 1$ inside a commutative square

The map $BSp(d) \to BSp$ is (4d + 3)-connected, so induces an isomorphism on $H^{4d}(-)$. For the purpose of computing $\mathfrak{v}^*(c_{2d})$, it is thus sufficient to work with $\mathfrak{v} \colon BSp(d) \to BU(2d)$. We have a cartesian square³

and therefore

$$\mathfrak{v}^*(c_{2d}) = \mathfrak{v}^*e(q)$$
$$= e(\mathfrak{v}^*q)$$
$$= e(p)$$
$$= x_d$$

Finally

$$\mathfrak{v}^*(c_{2d}) = x_d$$
 and $\mathfrak{v}^*(c_{2d+1}) = 0$

since $\mathrm{H}^{4d+2}(\mathrm{BSp}) \simeq 0$.

3) We now turn our attention to $\mathfrak{h} \colon \mathrm{BU} \to \mathrm{BSp}$. Observe that the composite

$$BU \xrightarrow{\mathfrak{h}} BSp \xrightarrow{\mathfrak{v}} BU$$

 $^{^{3}}$ This square of connected groupoids commutes, and must therefore be cartesian since fibers over the base point are identified.

classifies the assignment $p \mapsto p \otimes_{\mathbb{C}} \mathbb{H} \simeq p \oplus \overline{p}$. In particular for $d \ge 1$:

$$\mathfrak{h}^*\mathfrak{v}^*(c_d) = \sum_{i=0}^d (-1)^i c_i c_{d-i}$$

and this sum cancels when d is odd by the change of variables i := d - i. By the computation above, we also obtain the formula

$$\mathfrak{h}^*(x_d) = \sum_{i=0}^{2a} (-1)^i c_i c_{2d-i}$$

4) The forgetful map $\mathfrak{w} \colon BSp \to BO$ factors as

$$\operatorname{BSp} \overset{\mathfrak{v}}{\longrightarrow} \operatorname{BU} \overset{\mathfrak{u}}{\longrightarrow} \operatorname{BO}$$

and therefore

$$\mathfrak{w}^*(p_d) = \mathfrak{v}^*\mathfrak{u}^*(p_d)$$
$$= \mathfrak{v}^*\left(\sum_{i=0}^{2d} (-1)^{i+d} c_i c_{2d-i}\right)$$
$$= (-1)^d \sum_{i=0}^d x_i x_{d-i}$$

Exercise 4. We begin by proving the result for X n-truncated for some $n \ge 1$ by induction:

• for n = 1, then $X \simeq BG$ for some finite group G. By the above discussion, we know that

 $\mathrm{H}^*(\mathrm{B}G;\mathbb{Q})\simeq\mathrm{Ext}^*_{\mathbb{Q}[G]}(\mathbb{Q},\mathbb{Q})$

Notice that \mathbb{Q} is $\mathbb{Q}[G]$ -projective by considering the following retract diagram

$$\mathbb{Q} \xrightarrow{N} \mathbb{Q}[G] \xrightarrow{\varepsilon} \mathbb{Q}$$

where N is defined by

$$N(1) := \frac{1}{\operatorname{card} G} \sum_{g \in G} g$$

It follows that $H^*(BG; \mathbb{Q}) \simeq \mathbb{Q}$.

• assume that the results holds for some $n \ge 1$, and suppose X to be (n + 1)-truncated. Distinguish between two cases:

(1) if $X \equiv K(G, n + 1)$, then consider the following fiber sequence

$$\mathcal{K}(G,n) \longrightarrow * \longrightarrow \mathcal{K}(G,n+1)$$

Since the pullback map

$$\mathrm{H}^*(*;\mathbb{Q}) \to \mathrm{H}^*(\mathrm{K}(G,n);\mathbb{Q}) \simeq \mathbb{Q}$$

is an isomorphism by the induction hypothesis, Leray–Hirsch gives a Q-linear identification

$$\mathrm{H}^*(\mathrm{K}(G, n+1); \mathbb{Q}) \simeq \mathbb{Q} \otimes_{\mathbb{Q}} \mathbb{Q}$$
$$\simeq \mathbb{Q}$$

(2) in general X is connected, thus non-empty. Choosing some base point, consider the following fiber sequence

 $\mathcal{K}(G,n+1) \longrightarrow X \longrightarrow \tau_{\leq n} X$

where $G := \pi_{n+1}(X)$ is a finite abelian group. The induced map in cohomology

$$\mathrm{H}^*(X;\mathbb{Q}) \to \mathrm{H}^*(\mathrm{K}(G,n+1);\mathbb{Q}) \simeq \mathbb{Q}$$

is surjective by case (1). Using Leray–Hirsch and the induction hypothesis, we obtain an isomorphism

$$\mathrm{H}^*(X;\mathbb{Q})\simeq\mathbb{Q}$$

of \mathbb{Q} -modules.

In the general case, the map $X \to \tau_{\leq n} X$ is *n*-connected for $n \geq 0$. In particular it induces isomorphisms in cohomology groups in some range by Hurewicz theorem, so that

$$\begin{aligned} \mathrm{H}^*(X;\mathbb{Q}) &\simeq \lim_n \mathrm{H}^*(\tau_{\leq n}X;\mathbb{Q}) \\ &\simeq \lim_n \mathbb{Q} \\ &\simeq \mathbb{Q} \end{aligned}$$