
TOPOLOGIE IV – EXERCISE SHEET 3

MARCUS NICOLAS

Quotients of ∞-groups. Given a morphism H → G of group objects in Gpd, the quotient G/H is defined
as the fiber

G/H :≃ fib(BH → BG)

Pasting cartesian squares

G G/H ∗

∗ BH BG

⌟ ⌟

shows that the structural map G/H → BH classifies an H-principal bundle G → G/H.
When G is a topological group and H a subgroup such that the projection G → G/H to the classical

quotient is a principal H-bundle, then shifting and applying B to the fiber sequence

H G G/H

yields

G/H BH BG

so that the notation is justified.

Exercise 1. The map

Sd ≃ SO(d+ 1)/SO(d) → BSO(d)

classifies the principal SO(d)-bundle

ev1 : SO(d+ 1) → Sd

given by evaluating on the first element of the canonical basis. Observe that the fiber of ev1 above a unit
vector x ∈ Sd are direct orthonormal bases (y1, . . . , yd) of x

⊥, or in other words direct orthonormal frames
of the tangent bundle TSd → Sd, with its canonical metric and orientation, at x. Finally

Sd → BSO(d)

classifies the tangent bundle of Sd.
The horizontal lines in the following diagram of pointed groupoids

Sd BSO(d) BSO(d+ 1)

Sd BSF(d) BSG(d+ 1)

K(Z, d) ∗ K(Z, d+ 1)

[Sd] e

being fiber sequences, we obtain by naturality of the long exact sequence induced on homotopy groups
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πd+1

(
BSO(d+ 1)

)
πd+1

(
BSG(d+ 1)

)
Z

πd

(
Sd

)
πd

(
Sd

)
Z

∂

e∗

∂

This is the desired factorization.

Exercise 2. Consider a fiber sequence

Sd Sm Snp

with typical fiber Sd where the integers d, m and n are non-negative. If n = 0, then m = 0 as well and p is
the identity. But this is absurd because d ≥ 0.

Only four terms are non-zero in the reduced Gysin sequence (with F2-coefficients)

· · · Hk−d−1(Sn) H
k
(Sn) H

k
(Sm) · · ·e(p)

Observe that:

(1) the group H
n+d+1

(Sn) is trivial and therefore the boundary map

∂ : H
n+d

(Sm) → Hn(Sn) ≃ F2

is surjective. This implies m = n+ d.

(2) observation (1) implies in particular H
d
(Sm) ≃ 0, and the map

e(p) : H0(Sn) → H
d+1

(Sn)

is injective. In particular n = d+ 1 and e(p) is invertible.

If n ≥ 2, then p is oriented and the same argument as above using coefficients Z instead of F2 shows that
the oriented Euler class is invertible.

In particular, the Euler classes of the Hopf fibrations

S0 S1 P1(R) ≃ S1

S1 S3 P1(C) ≃ S2

S3 S7 P1(H) ≃ S4

γR
1

γC
1

γH
1

are invertible. Since the sign of the oriented Euler class depends on the identification of the fiber, we can
assume that the Euler classes of the last two sequences are both 1.

Exercise 3. Observe that the exercise makes sense because Stiefel–Whitney classes are stable, and that it
suffices to prove these relations for a given spherical fibration p : E → B of rank d− 1 (and in particular for
the universal one BF(d− 1) → BG(d)).

If u ∈ Hd(Th(p);F2) is the Thom class and n ≥ 0, we compute in Hn+1+d(Th(p);F2)

Sq1 Sqn(u) = Sq1(wn · u)
= Sq1(u) · wn + Sq1(wn) · u
=

(
w1wn + Sq1(wn)

)
· u

where the second step uses Cartan’s formula. But remember that the Adem relations imply

Sq1 Sqn =

{
Sqn+1 if n is even

0 if n is odd
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Using the Thom isomorphism, we obtain finally

Sq1(wn) =

{
w1wn + wn+1 if n is even

w1wn if n is odd

in Hn+1(B;F2).

Exercise 4. For p : E → B and p′ : E′ → B′ two spherical fibrations of rank d − 1 and d′ − 1 respectively
with B and B′ connected.

Since the fundamental class
[
Sk+1

]
for some k ≥ 0 is by definition the image of

[
Sk

]
under the suspension

isomorphism [
S1

]
⊗ (−) : H

k(
Sk;Z

)
≃ H

k+1(
Sk+1;Z

)
where we implicitly use Künneth to compute H

∗
of a smash product, it follows that[

Sd
]
⊗
[
Sd′]

=
[
S1

]⊗(d+d′)

=
[
Sd+d′]

in H
d+d′(

Sd+d′
;Z

)
.

Choosing base points for B and B′, the commutative diagram

Sd ∧ Sd′
Sd+d′

Th
(
Sd−1

)
∧ Th

(
Sd′−1

)
Th

(
Sd+d′−1

)

Th(p) ∧ Th(p′) Th(p ⋆ p′)

then yields the equality of unoriented Thom classes

u(p ⋆ p′) = u(p)⊗ u(p′)

Pulling back along the following commutative square

B ∧B′ B ×B′

Th(p) ∧ Th(p′) Th(p ⋆ p′)

finally shows the desired relation on Euler classes

e(p ⋆ p′) = e(p)× e(p′)

If B ≡ B′, denote ∆B : B → B ×B the diagonal and compute

e(p⊕ p′) = e(∆∗
B(p ⋆ p

′))

= ∆∗
B e(p ⋆ p′)

= ∆∗
B(e(p)× e(p′))

= e(p) · e(p′)
The proof in the oriented case is the same.
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