
TOPOLOGIE IV – EXERCISE SHEET 2

MARCUS NICOLAS

Universality of colimits in Gpd. Given a map f : X → Y between groupoids, the pullback functor sits
inside a commutative diagram

Gpd/Y Gpd/X

Fun(Y,Gpd) Fun(X,Gpd)

f∗

f∗

Since colimits in those functor categories are formed pointwise, they are preserved by precomposition. In
particular, the base change along f functor

f∗ : Gpd/Y → Gpd/X

preserves colimits. We say that colimits are universal in Gpd. As an exercice, show that colimits in Cat are
not universal.

Truncated maps. Let C be a category with finite limits. For k ≥ −2, a map f : x → y of C is (k + 1)-
truncated if and only if the diagonal ∆f : x → x×y x is k-truncated.

Using this characterisation, one can show that any left exact functor F : C → D between categories with
finite limits preserves truncatedness of objects and morphisms. If F is conservative, then it furthermore
reflects truncatedness. For instance, since the forgetful functor Gpd∗ → Gpd is conservative and preserves
limits, it preserves and reflects truncatedness.

Lifting problems and finding sections. Let C be a category. For any cospan in C

x b e
f p

whose limit exists, consider the following diagram

HomC/x
(x, f∗p) HomC(x, f

∗p) HomC(x, e)

∗ HomC(x, x) HomC(x, b)

⌟ ⌟
f∗

idx u∗

In particular, the two following lifting problems are equivalent

e

x b

p

f

↭

x×b e

x x

f∗p

As a slogan, every lifting problem is equivalent to the problem of constructing a section.
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A criterion for connectivity. For X a pointed groupoid and n ≥ 0, the following are equivalent:

(i) X is n-connected, or in other words τ≤nX ≃ ∗
(ii) Hom∗(X,Y ) ≃ ∗ for every pointed and n-truncated groupoid Y
(iii) for any m-truncated morphism f : Y → Z between pointed groupoids, the map

f∗ : Hom∗(X,Y ) → Hom∗(X,Z)

is (m− n− 1)-truncated.

Proof. Clearly (iii) implies (ii).
We now show that (ii) implies (i). For any groupoid Y , the evaluation map ev∗ : Hom(X,Y ) → Y is an

equivalence, since all of its fibers are contractible by assumption. Yoneda lemma then implies that τ≤nX ≃ ∗.
Finally, we turn to the implication (i) implies (iii). Since the functor Hom∗(X,−) preserves limits, the

map

f∗ : Hom∗(X,Y ) → Hom∗(X,Z)

induced by composition with some f : Y → Z is (k + 1)-truncated if and only if the map

(∆f )∗ : Hom∗(X,Y ) → Hom∗(X,Z)

induced by the diagonal ∆f : Y → Y ×Z Y is k-truncated. By induction, it thus suffices to show that f∗ is
an equivalence when f is (n− 1)-truncated. In this case, the fiber above u : X → Z of f∗ is the groupoid of
pointed sections of u∗f : W → X

Hom∗/X(X,u∗f) Hom∗(X,Y )

∗ Hom∗(X,Z)

⌟
f∗

u

By assumption X is connected, and thus u∗f has typical fiber F for some (n − 1)-truncated groupoid F .
Since Aut(F ) is a reunion of connected components of the (n−1)-truncated groupoid End(F ) :≃ Hom(F, F ),
it is itself (n − 1)-truncated and BAut(F ) is n-truncated. Since X is n-connected, the classifying map
X → BAut(F ) is constant, and pasting cartesian squares

X × F F BAut∗(F )

X ∗ BAut(F )

⌟ ⌟

yields an identification W ≃ X × F over X. Using the base point of W to turn F into a pointed groupoid:

Hom∗/X(X,u∗f) ≃ Hom∗/X(X,X × F )

≃ Hom∗(X,F )

≃ ∗

where the last step uses again that X is n-connected. Finally the map

f∗ : Hom∗(X,Y ) → Hom∗(X,Z)

has contractible fibers, and therefore is an equivalence. This concludes the proof. □

Exercise 1. Observe that ∗∧ (−) and S0∧ (−) are left adjoint to the functors ∗ : Gpd∗ → Gpd∗ and idGpd∗

respectively, and thus

∗ ∧ (−) ≃ ∗ et S0 ∧ (−) ≃ idGpd∗

Since (−) ∧ (−) preserves colimits in each variable, we have a pushout square
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idGpd∗ ∗

∗ S1 ∧ (−)
⌜

and a canonical natural isomorphism S1 ∧ (−) ≃ Σ. In particular

Σ(− ∧−) ≃ Σ(−) ∧ (−)

≃ (−) ∧ Σ(−)

since the smash product is commutative.

Exercise 2. Let X and Y two pointed groupoids being respectively m- and n-connected with m and n
non-negative. For Z pointed and (m + n + 1)-truncated, the criterion above shows that Hom∗(Y,Z) is
m-truncated and thus

Hom∗(X ∧ Y, Z) ≃ Hom∗(X,Hom∗(Y,Z))

≃ ∗
Since this holds uniformly in Z, the smash product X ∧ Y must be (m+ n+ 1)-connected.

The result is false when m and n are allowed to be negative. For instance, smashing with the (−1)-
connected space S0 ∨ S0 does not preserve connectedness.

Exercise 3 ([DH21, lemma 2.17]). Mather’s second cube lemma follows immediately from the universality of
pushouts in Gpd. Let now C be a category with universal pushouts. Recall that the endofunctor Σ: C∗ → C∗
is defined by the following cocartesian square

id ∗

∗ Σ
⌜

in the category of endofunctors of the category of pointed objects C∗.
Consider now the following cube

ΩΣ ∗

fib(id → Σ) ΩΣ

∗ Σ

id ∗

ξ1

ξ2

where the top face is obtained by pulling back the bottom face along the base point ∗ → Σ. Since the bottom
face is a pushout, the top one must be as well by assumption.

By pasting cartesian squares all four other squares appearing in the cube are cartesian. Looking at the
front face yields an identification

fib(id → Σ) id× ΩΣ

ΩΣ

ξ2
pr2
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above ΩΣ. Finally, we obtain a pushout square

id× ΩΣ ΩΣ

ΩΣ ∗

pr2

a

⌜

where a is the composite

id× ΩΣ fib(id → Σ) ΩΣ
ξ1

Observe that a is in general only conjugated to pr2 by an automorphism of id×ΩΣ but is not homotopic to
it. Indeed, base changing the defining pushout square of Σ along pr1 : Σ× ΩΣ → Σ yields

id× ΩΣ ΩΣ

ΩΣ Σ× ΩΣ

pr2

pr2

⌜

but Σ× ΩΣ is not terminal in general.

Exercise 4 ([DH21, theorem 1.4]). Let C be a category with finite products and pushouts. Remember that
for two pointed objects x and y, the natural identification x ⋆ y ≃ Σ(x ∧ y) is obtained by computing both
sides as the colimit of the following diagram

∗ ∗ ∗

x x ∨ y y

x x× y y

In particular, the structure maps x → x ⋆ y and y → x ⋆ y both naturally factor through the point, which is
not obvious from the definition.

The following diagram

x× y y

x ∗ x ⋆ y

∗ Σx Σx ∨ (x ⋆ y)

pr2

pr1

⌜

⌜ ⌜

gives canonical identifications

cofib(pr2 : x× y → y) ≃ Σx ∨ (x ⋆ y)

≃ Σx ∨ Σ(x ∧ y)

When C has universal pushouts, then combining this with the result from previous exercise we obtain natural
isomorphisms

ΣΩΣ ≃ cofib(pr2 : id× ΩΣ → ΩΣ)

≃ Σ ∨ Σ(id ∧ ΩΣ)

≃ Σ ∨ (id ∧ ΣΩΣ)
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of endofunctors of C∗. Plugging in the formula for ΣΩΣ then yields

ΣΩΣ ≃ Σ ∨
(
id ∧ (Σ ∨ Σ(id ∧ ΩΣ))

)
≃ Σ ∨ Σ

(
id∧2

)
∨
(
id∧2 ∧ ΣΩΣ

)
and by induction

ΣΩΣ ≃
n∨

i=1

Σ
(
id∧i

)
∨
(
id∧n ∧ ΣΩΣ

)
for all n ≥ 1. In particular there is a well defined comparison morphism∨

i≥1

Σ
(
id∧i

)
→ ΣΩΣ

between endofunctors of C∗.
Fix now X a pointed and connected groupoid. For n ≥ 1, both the left map and the composite in the

following diagram

n∨
i=1

Σ
(
X∧i

) ∨
i≥1

Σ
(
X∧i

)
ΣΩΣX

are the canonical inclusions, and therefore are both at least n-connected by the second exercise. By the
cancellation property for connected morphisms, the right map is also n-connected. Since this holds for all
n, we get the James splitting

ΣΩΣX ≃
∨
i≥1

Σ
(
X∧i

)

Exercise 5. Let K be R, C or H, and d := [K : R]. For n ≥ 1, recall that Pn+1(K) is obtained from Pn(K)
via the following cell attachment in Top

Sd(n+1)−1 Pn(K)

Dd(n+1) Pn+1(K)

γK
n

⌜

along the tautological spherical fibration Sd(n+1)−1 → Pn(K). But all objects at play are cofibrant and the
left vertical map is a cofibration, so this pushout is furthermore an homotopy pushout. The cocartesian
square in Gpd

Sd(n+1)−1 Pn(K)

∗ Pn+1(K)

γK
n

⌜

thus yields an identification
Th

(
γK
n

)
≃ Pn+1(K)

This implies Th
(
γK
∞
)
≃ P∞(K), which was also evident from the description of γK

∞ as the universal principal
(K×)-bundle.
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