
TOPOLOGIE IV – EXERCISE SHEET 1

MARCUS NICOLAS

Notation. Given an object x in a C an ∞-category, define BAutC(x) to be the subcategory of C on objects
equivalent to x and equivalences. The notation is justified by the fact that BAutC(x) is by definition
a connected groupoid, such that ΩxBAutC(x) ≃ AutC(x). Any functor F : C → D induces a canonical
morphism BAutC(x) → BAutD(Fx).

When p : E → B is a functor between groupoids with small fibers (meaning that the pullback of p along
any map B′ → B whose domain is a small groupoid is small), then the naturality of the Grothendieck
construction gives a cartesian square

E Gpd∗

B Gpd

p

⌟

where Gpd∗ → Gpd is the left fibration induced by idGpd, also known as the universal left fibration (with
small fibers). When p has typical fiber F , then the straightening B → Gpd factorises through BAut(F ).
Define BAut∗(F ) by the following pullback

E BAut∗(F ) Gpd∗

B BAut(F ) Gpd

p

⌟ ⌟

Observe that BAut∗(F ) is connected iff F is, so that BAut∗(F ) is not stricto sensu the delooping of a group
Aut∗(F ), even though Ω(F,∗)BAut∗(F ) ≃ Aut∗(F ).

Existence and computation of (co)limits in Gpd. Given a small category I, remember that we have
canonical adjunctions

Cat/I Cat Gpd

p!

⊣
⊣

p∗

p∗

Π∞

⊣

where p∗ is the pullback along p : I → ∗, or in other words the functor I × (−) : Cat → Cat/I . The left
adjoint p! is given by composition with p, and the right adjoint is given by taking sections. More explicitely
p∗ ≃ {idI} ×Fun(I,I) Fun(I, p!(−)).

Observe now that these adjunctions induce adjunctions on the full subcategories of left fibrations on both
sides:

LFib(I) LFib(∗) ≃ Gpd

Π∞ p!

⊣
⊣

p∗

p∗

where p∗ and p∗ are the restrictions of the previous functors.
For instance, to show that p∗ sends left fibrations to left fibrations, one uses the two following facts:

(i) the functor Fun(I,−) preserves left fibrations
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(ii) left fibrations are stable under base change

Now, the naturality of the Grothendieck construction makes the following diagram commute

Fun(I,Gpd) Fun(∗,Gpd)

LFib(I) LFib(∗)

p∗

p∗

and the two vertical maps are equivalences. The constant diagram functor p∗ : Gpd → Fun(I,Gpd) thus
has a left adjoint colimI(−) and a right adjoint limI(−), given by the formulas

colim
I

(−) ≃ Π∞ p! ◦Un and lim
I
(−) ≃ p∗ ◦Un

where Un denotes the canonical identification Fun(I,Gpd) ≃ LFib(I).
On objects, this means that for a diagram X : I → Gpd whose corresponding left fibration is denoted

Un(X) → I, one has

colim
I

X ≃ Π∞Un(X) and lim
I

X ≃ {idI} ×Fun(I,I) Fun(I,Un(X))

As a slogan, colimits and limits of diagrams of groupoids are computed by localizing or by taking sections
of the Grothendieck construction. We give two exercises on this thema for the interested student.

(1) If I is a small category, show the map induced by restriction along the unit ℓ : I → Π∞(I) induces
a natural isomorphism

lim
I

ℓ∗(−) ≃ lim
Π∞(I)

(−)

between functors Fun(Π∞(I),Gpd) → Gpd, and deduce that (co)limits of constant diagrams indexed
by I in any ∞-category only depend on the fundamental groupoid Π∞(I). Hint: left fibrations are
conservative.

(2) Adapt the above discussion in order to compute (co)limits in Cat.

Morphisms in arrow categories. Let C be an ∞-category, and denote Mor(C) :≃ Fun([1], C). Given two
objects f : x → y and g : z → w of Mor(C), then uncurrying yields a pullback square

HomMor(C)(f, g) Fun([1]× [1], C)

∗ Fun([(0, 0) < (0, 1)], C)× Fun([(1, 0) < (1, 1)], C)

⌟

Since the right vertical map sits as the red map inside the cube

Fun([(0, 0) < (0, 1)], C)× Fun([(1, 0) < (1, 1)], C) Fun([(1, 0) < (1, 1)], C)

Fun([1]× [1], C) Fun([(0, 0) < (1, 0) < (1, 1)], C)

Fun([(0, 0) < (0, 1)], C) Fun(∅, C)

Fun([(0, 0) < (0, 1) < (1, 1)], C) Fun([(0, 0) < (1, 1)], C)

⌟

⌟

whose front and back faces are cartesian, its fibers are computed by taking the fiber product of the fibers of
the blue maps. At (f, g), this shows that outer square of the following diagram:
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HomMor(C)(f, g) HomC(x, z) C/z

HomC(y, w) HomC(x,w) C/w

Cy/ Cx/ Mor(C)

⌟
g∗

⌟
g∗

f∗

⌟ ⌟

f∗

is cartesian. The inner squares are filled by pasting, for example the fact that the lower left square is cartesian
can be seen on the following diagram

HomC(x,w) Cx/

HomC(y, w) Cy/

∗ C

∗ C

⌟f∗

⌟

f∗

w

w

since the lower face is cartesian. Subsequently, we will use that this formula can be made natural in f and
g, even though we only have established it pointwise.

Recall that for an object x the slice categories over and under C are defined by the following cartesian
squares

C/x Mor(C)

∗ C

⌟
ev1

x

and

Cx/ Mor(C)

∗ C

⌟
ev0

x

From the above, we obtain natural identifications

HomC/x
(a, b) HomC(a, b)

∗ HomC(a, x)

⌟
and

HomCx/
(a, b) HomC(a, b)

∗ HomC(x, b)

⌟

for objects a and b living either above or below x.

Colimits in underslices. Let C be an ∞-category together with a choice of object x. By the above, the
hom groupoid from a to b between two objects over x sits inside a natural cartesian square

HomCx/
(a, b) HomC(a, b)

∗ HomC(x, b)

⌟

Therefore the colimit of a diagram F : I → Cx/ can be computed as the bottom map in the following pushout
of C

colimx colimF

x q
⌜
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as soon as all these colimits exists in C. Indeed, for any object b under x one has the chain of identifications:

HomCx/
(q, b) ≃ HomC(q, b)×HomC(x,b) ∗

≃
(
HomC(colimF, b)×HomC(colim x ,b) HomC(x, b)

)
×HomC(x,b) ∗

≃ limHomC(F (−), b)×HomC(x,b) ∗
≃ limHomCx/

(F (−), b)

natural in b.
A direct consequence of this fact is that the forgetful functor Cx/ → C preserves colimits indexed by weakly

contractible categories, for instance pushouts. Since Gpd∗ :≃ Gpd∗/ is an underslice category, we derive for
instance from this computation that the forgetful functor Gpd∗ → Gpd commutes with suspension.

Exercise 1. All small colimits exist in Gpd∗ by what was done above. More explicitely, the colimit of a
diagram X : I → Gpd∗ is computed in Gpd by the following pushout

Π∞(I) Π∞Un(X)

colim ∗ colimπX

∗ colimX

Π∞(s)

⌜

⌜

where π : Gpd∗ → Gpd is the forgetful functor and s is the section of Un(X) → I obtained by unstraightening
the natural transformation ∗ → X.

Given a pointed spherical fibration p : E → B straightened to ξ : B → Gpd∗ we obtain in particular

B E

∗ colim ξ

s

⌜

where s : B → E is the section induced by the natural transformation ∗ → ξ. This furnishes a canonical
equivalence Th∗(p) ≃ colim ξ.

Exercise 2. Since ps ≃ id, pasting cocartesian squares gives

B E B

∗ Th∗(p) ∗

∗ Th(p)

s p

⌜ ⌜

⌜

and in particular yields a canonical equivalence Th(p) ≃ ΣTh∗(p).

Exercise 3. Fix an integer d ≥ 0.

1) The fiber sequence



TOPOLOGIE IV – EXERCISE SHEET 1 5

Sd BF(d)

∗ BG(d+ 1)

⌟

shows that the fiber of the forgetful map BF(d) → BG(d+ 1) is (d− 1)-connected, so that the map
itself is d-connected.

2) Given a pair of composable adjunctions

C D E

L

⊣

R

L′

⊣

R′

remember that the unit η′′ of the composite L′L ⊣ RR′ is defined as the composite

idC RL RR′L′L
η Rη′L

where η and η′ are the respective units of the adjunctions L ⊣ R and L′ ⊣ R′. Using this observation,
remark that the following diagram

HomD(L(−),−) HomE(L
′L(−), L′(−))

HomC(−, R(−)) HomC(−, RR′L′(−))

L′

(Rη′)∗

canonically commutes.
Applying this observation the endoadjunctions Σd ⊣ Ωd and Σ ⊣ Ω of Gpd∗ yields

Hom∗(Σ
d(−),−) Hom∗(Σ

d+1(−),Σ(−))

Hom∗(−,Ωd(−)) Hom∗(−,Ωd+1Σ(−))

Σ

(Ωdη)∗

where η : idGpd∗ → ΩΣ is the unit. Evaluating the left variable at S0 gives

Hom∗(S
d,−) Hom∗(S

d+1,Σ(−))

Ωd Ωd+1Σ

Σ

Ωdη

and in particular

End∗(S
d) End∗(S

d+1)

ΩdSd Ωd+1Sd+1

Σ

Ωdη

Recall that Freudental theorem states that the unit η : Sd → ΩSd+1 is (2d − 1)-connected, and
therefore Σ: End∗(S

d) → End∗(S
d+1) is (d − 1)-connected. Since Σ: F(d) → F(d + 1) is obtained

by restricting this map along the same connected components of maps of degree ±1, it must be
(d− 1)-connected as well. Finally, Σ: BF(d) → BF(d+ 1) is d-connected.


	Existence and computation of (co)limits in Gpd
	Morphisms in arrow categories
	Colimits in underslices

